Probing Activation and Deactivation Mechanisms in Electrochemical CO2 Reduction Reaction and Water Splitting through In-Situ/Operando Analysis

IF 6.1 Q1 CHEMISTRY, MULTIDISCIPLINARY
Woo Seok Cheon, Jaehyun Kim, Ho Won Jang
{"title":"Probing Activation and Deactivation Mechanisms in Electrochemical CO2 Reduction Reaction and Water Splitting through In-Situ/Operando Analysis","authors":"Woo Seok Cheon,&nbsp;Jaehyun Kim,&nbsp;Ho Won Jang","doi":"10.1002/cmtd.202400066","DOIUrl":null,"url":null,"abstract":"<p>The transition to a carbon-neutral society demands the development of efficient and durable electrocatalysts to drive electrochemical water splitting and CO<sub>2</sub> reduction reactions (CO<sub>2</sub>RR). To fabricate high-performing electrocatalysts, it is essential to unveil catalyst materials’ activation and deactivation mechanisms under actual reaction conditions, a challenge that ex-situ/post-mortem characterization cannot fulfill. In-situ transmission electron microscopy, X-ray spectroscopy, and Raman spectroscopy, along with various other analytical techniques, are essential methods for revealing the structural and chemical properties of electrochemical catalyst materials in both bulk and surface. In-situ/operando characterization offers unprecedented insights into the structural and electronic changes on catalyst surfaces, revealing critical aspects of catalytic activity, selectivity and stability during operation. These methods are useful in identifying active sites, understanding morphology and phase transitions, and uncovering the underlying mechanisms driving catalytic processes. This perspective explores recent works on the application of in-situ/operando spectroscopic and microscopic techniques to electrochemical CO<sub>2</sub>RR and water splitting. By organizing recent findings, we highlight the irreplaceable role of in-situ/operando analysis in refining catalyst design for enhanced performance and robustness. Furthermore, we discuss future directions for integrating these characterization methods into catalyst development workflows, offering a roadmap toward developing electrocatalyst materials for green hydrogen production and CO<sub>2</sub> reduction.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"5 6","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202400066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The transition to a carbon-neutral society demands the development of efficient and durable electrocatalysts to drive electrochemical water splitting and CO2 reduction reactions (CO2RR). To fabricate high-performing electrocatalysts, it is essential to unveil catalyst materials’ activation and deactivation mechanisms under actual reaction conditions, a challenge that ex-situ/post-mortem characterization cannot fulfill. In-situ transmission electron microscopy, X-ray spectroscopy, and Raman spectroscopy, along with various other analytical techniques, are essential methods for revealing the structural and chemical properties of electrochemical catalyst materials in both bulk and surface. In-situ/operando characterization offers unprecedented insights into the structural and electronic changes on catalyst surfaces, revealing critical aspects of catalytic activity, selectivity and stability during operation. These methods are useful in identifying active sites, understanding morphology and phase transitions, and uncovering the underlying mechanisms driving catalytic processes. This perspective explores recent works on the application of in-situ/operando spectroscopic and microscopic techniques to electrochemical CO2RR and water splitting. By organizing recent findings, we highlight the irreplaceable role of in-situ/operando analysis in refining catalyst design for enhanced performance and robustness. Furthermore, we discuss future directions for integrating these characterization methods into catalyst development workflows, offering a roadmap toward developing electrocatalyst materials for green hydrogen production and CO2 reduction.

利用原位/Operando分析探讨电化学CO2还原反应和水裂解的活化和失活机理
向碳中和社会的过渡需要开发高效耐用的电催化剂来驱动电化学水分解和二氧化碳还原反应(CO2RR)。为了制造高性能的电催化剂,必须揭示催化剂材料在实际反应条件下的活化和失活机制,这是一个非原位/死后表征无法完成的挑战。原位透射电子显微镜、x射线光谱学和拉曼光谱学,以及其他各种分析技术,是揭示电化学催化剂材料在体和表面的结构和化学性质的基本方法。原位/operando表征为催化剂表面的结构和电子变化提供了前所未有的见解,揭示了催化活性、选择性和稳定性的关键方面。这些方法在识别活性位点、理解形态和相变以及揭示驱动催化过程的潜在机制方面是有用的。这一观点探讨了原位/operando光谱和微观技术在电化学CO2RR和水分解中的应用。通过整理最近的发现,我们强调了原位/operando分析在改进催化剂设计以提高性能和稳健性方面的不可替代的作用。此外,我们讨论了将这些表征方法整合到催化剂开发工作流程中的未来方向,为开发用于绿色制氢和减少二氧化碳的电催化剂材料提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信