Sarah A. Kemp, Pierre-Louis Bazin, Steven Miletić, Russell J. Boag, Max C. Keuken, Mark R. Hinder, Birte U. Forstmann
{"title":"Neuroanatomical Changes in the Stopping Network Across the Adult Lifespan Assessed With Quantitative and Diffusion MRI","authors":"Sarah A. Kemp, Pierre-Louis Bazin, Steven Miletić, Russell J. Boag, Max C. Keuken, Mark R. Hinder, Birte U. Forstmann","doi":"10.1002/hbm.70240","DOIUrl":null,"url":null,"abstract":"<p>Response inhibition, the cancellation of planned movement, is essential for everyday motor control. Extensive fMRI and brain stimulation research provides evidence for the crucial role of a number of cortical and subcortical regions in response inhibition, including the subthalamic nucleus (STN), presupplementary motor area (preSMA) and the inferior frontal gyrus (IFG). Current models assume that these regions operate as a network, with action cancellation originating in the cortical areas and then executed rapidly via the subcortex. Response inhibition slows in older age, a change that has been attributed to deterioration or changes in the connectivity and integrity of this network. However, previous research has mainly used whole-brain approaches when investigating changes in structural connectivity across the lifespan or has used simpler measures to investigate structural ageing. Here, we used high-resolution quantitative and diffusion MRI to extensively examine the anatomical changes that occur in this network across the lifespan. We found age-related changes in iron concentration in these tracts, increases in the apparent diffusion coefficient and some evidence for a decrease in myelin content. Conversely, we found very little evidence for age-related anatomical changes in the regions themselves. We propose that some of the functional changes observed in these regions in older adult populations (e.g., increased BOLD recruitment) are a reflection of alterations to the connectivity between the regions rather than localised regional change.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 8","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70240","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70240","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Response inhibition, the cancellation of planned movement, is essential for everyday motor control. Extensive fMRI and brain stimulation research provides evidence for the crucial role of a number of cortical and subcortical regions in response inhibition, including the subthalamic nucleus (STN), presupplementary motor area (preSMA) and the inferior frontal gyrus (IFG). Current models assume that these regions operate as a network, with action cancellation originating in the cortical areas and then executed rapidly via the subcortex. Response inhibition slows in older age, a change that has been attributed to deterioration or changes in the connectivity and integrity of this network. However, previous research has mainly used whole-brain approaches when investigating changes in structural connectivity across the lifespan or has used simpler measures to investigate structural ageing. Here, we used high-resolution quantitative and diffusion MRI to extensively examine the anatomical changes that occur in this network across the lifespan. We found age-related changes in iron concentration in these tracts, increases in the apparent diffusion coefficient and some evidence for a decrease in myelin content. Conversely, we found very little evidence for age-related anatomical changes in the regions themselves. We propose that some of the functional changes observed in these regions in older adult populations (e.g., increased BOLD recruitment) are a reflection of alterations to the connectivity between the regions rather than localised regional change.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.