Erich T. Hester, Nathalie Voisin, Natalie A. Griffiths, Shih-Chieh Kao
{"title":"Intersection of Hydrologic Change and Hydropower in the United States: Needs for Future Research and Practice","authors":"Erich T. Hester, Nathalie Voisin, Natalie A. Griffiths, Shih-Chieh Kao","doi":"10.1111/1752-1688.70020","DOIUrl":null,"url":null,"abstract":"<p>Hydropower is crucial for electric-grid stability in the context of variable renewables but faces threats from changing hydrology. Here, we summarize the state of the science at the intersection of hydropower operations and planning, hydrologic science, and climate. We focus on the United States, outlining research, development, and training needs. Key knowledge gaps include the risk that intensification of compound extreme events poses to future generation, as well as uncertainties surrounding greenhouse gas emissions from hydropower reservoirs with relevance to hydropower's role in energy decarbonization. Quantifying such impacts and reducing uncertainty are critical where possible, but remaining irreducible or deep uncertainty will require new approaches. Future monitoring and modeling methods must provide a better understanding of the complexity inherent in large watersheds that is critical to managing both hydropower and watersheds in the context of hydrologic change. Yet, research and development will have little impact if they do not inform practice. Standardization and consolidation of platforms are essential for data, modeling, and tool translation to local scales and small operators. An enhanced industry-academia dialog is pivotal for fostering a robust pipeline of hydropower professionals. Collaboration among researchers, policymakers, authorities, and industry stakeholders emerges as a recurring theme, highlighting the imperative for collective efforts.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.70020","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydropower is crucial for electric-grid stability in the context of variable renewables but faces threats from changing hydrology. Here, we summarize the state of the science at the intersection of hydropower operations and planning, hydrologic science, and climate. We focus on the United States, outlining research, development, and training needs. Key knowledge gaps include the risk that intensification of compound extreme events poses to future generation, as well as uncertainties surrounding greenhouse gas emissions from hydropower reservoirs with relevance to hydropower's role in energy decarbonization. Quantifying such impacts and reducing uncertainty are critical where possible, but remaining irreducible or deep uncertainty will require new approaches. Future monitoring and modeling methods must provide a better understanding of the complexity inherent in large watersheds that is critical to managing both hydropower and watersheds in the context of hydrologic change. Yet, research and development will have little impact if they do not inform practice. Standardization and consolidation of platforms are essential for data, modeling, and tool translation to local scales and small operators. An enhanced industry-academia dialog is pivotal for fostering a robust pipeline of hydropower professionals. Collaboration among researchers, policymakers, authorities, and industry stakeholders emerges as a recurring theme, highlighting the imperative for collective efforts.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.