The Relationship Between the Sound Velocity and Deterioration Degree of Long-Term Operation XLPE

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Qian Wang;Rui Liu;Zeli Ju;Sichen Qin;Zhe Hou;Huan Lian;Rong Shi
{"title":"The Relationship Between the Sound Velocity and Deterioration Degree of Long-Term Operation XLPE","authors":"Qian Wang;Rui Liu;Zeli Ju;Sichen Qin;Zhe Hou;Huan Lian;Rong Shi","doi":"10.1109/TDEI.2025.3562533","DOIUrl":null,"url":null,"abstract":"With the continuous progress of urbanization, cross-linked polyethylene (XLPE) cable has been widely used in the construction of urban power grids. XLPE cable will deteriorate under the action of electricity, heat, and other factors for a long time, endangering the operation safety of the power grid. The trap characteristic is a significant means to reveal the mechanism of cable deterioration. To explore the relationship between cable deterioration and trap characteristics, this article uses the pulsed electroacoustic (PEA) method to analyze the trap characteristics of XLPE cables with the service life of 0, 15, and 30 years, respectively, and the sound velocity of XLPE was carried out under different temperature profiles. With the increase in operating life, the internal defects of the XLPE gradually expand, and the accumulation of charge increases significantly. The sound velocity increases gradually at the same temperature and the breakdown field strength gradually decreases. Taking 293 K as an example, compared with 0 A, the breakdown field strength of 15 and 30 A decreased by about 16.0% and 16.4%, respectively, and the corresponding medium sound velocity increased by about 5.89% and 13.71%, respectively. The results take the increase degree of sound velocity of polymer insulating medium as the characteristic parameter to characterize the deterioration level of cable, which provides a theoretical basis for evaluating the deterioration level of cable.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 3","pages":"1263-1270"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10970040/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous progress of urbanization, cross-linked polyethylene (XLPE) cable has been widely used in the construction of urban power grids. XLPE cable will deteriorate under the action of electricity, heat, and other factors for a long time, endangering the operation safety of the power grid. The trap characteristic is a significant means to reveal the mechanism of cable deterioration. To explore the relationship between cable deterioration and trap characteristics, this article uses the pulsed electroacoustic (PEA) method to analyze the trap characteristics of XLPE cables with the service life of 0, 15, and 30 years, respectively, and the sound velocity of XLPE was carried out under different temperature profiles. With the increase in operating life, the internal defects of the XLPE gradually expand, and the accumulation of charge increases significantly. The sound velocity increases gradually at the same temperature and the breakdown field strength gradually decreases. Taking 293 K as an example, compared with 0 A, the breakdown field strength of 15 and 30 A decreased by about 16.0% and 16.4%, respectively, and the corresponding medium sound velocity increased by about 5.89% and 13.71%, respectively. The results take the increase degree of sound velocity of polymer insulating medium as the characteristic parameter to characterize the deterioration level of cable, which provides a theoretical basis for evaluating the deterioration level of cable.
XLPE长期运行声速与恶化程度的关系
随着城市化进程的不断推进,交联聚乙烯(XLPE)电缆在城市电网建设中得到了广泛的应用。交联聚乙烯电缆在电力、热力等因素的长期作用下会发生劣化,危及电网的运行安全。陷波特性是揭示电缆劣化机理的重要手段。为探讨电缆劣化与陷阱特性之间的关系,本文采用脉冲电声(PEA)方法对使用寿命分别为0年、15年和30年的XLPE电缆的陷阱特性进行了分析,并对不同温度曲线下XLPE电缆的声速进行了测试。随着使用寿命的增加,XLPE的内部缺陷逐渐扩大,电荷积累明显增加。在相同温度下,声速逐渐增大,击穿场强逐渐减小。以293 K为例,与0 A相比,15和30 A击穿场强分别降低了约16.0%和16.4%,对应的介质声速分别提高了约5.89%和13.71%。研究结果以聚合物绝缘介质的声速增加程度作为表征电缆劣化程度的特征参数,为评价电缆劣化程度提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信