Degradation Characteristics of Dielectric Film Under Nanosecond Pulse Current and the Mechanism Based on PIC-MCC Simulation

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinru Sun;Zijia Jiao;Haoliang Liu;Zhiqiang Chen;Yupeng Chai;Xueling Yao
{"title":"Degradation Characteristics of Dielectric Film Under Nanosecond Pulse Current and the Mechanism Based on PIC-MCC Simulation","authors":"Jinru Sun;Zijia Jiao;Haoliang Liu;Zhiqiang Chen;Yupeng Chai;Xueling Yao","doi":"10.1109/TDEI.2025.3559908","DOIUrl":null,"url":null,"abstract":"The peaking capacitor is a crucial component in the high-altitude electromagnetic pulse (HEMP) device. One of the significant challenges faced by the peaking capacitor is the reduction in the flashover tolerance strength of the dielectric film. This article simulates the electromagnetic environment of dielectric film and carries out flashover experiments to study the degradation characteristics of polypropylene (PP) and polyethylene terephthalate (PET) films under nanosecond pulse current injection. The effects of damage type and degree on the flashing process are analyzed by particle-in-cell Monte-Carlo-collision (PIC-MCC) method. The results show that the deformation characteristics of the film surface under nanosecond pulse current have a key influence on the flashing tolerance strength. Specifically, the raised and folded deformation of the PP film can increase the electron emission coefficient of the surface and expand the ionization range of the gas, which significantly enhances the number of electrons and reduces the flashover voltage. The microporous deformation of PET film increases the area of electron collision, but the pitted deformation restricts the diffusion of low-energy electrons. As a result, the number of electrons remains balanced, leading to a more stable flashover strength. The simulation can predict the flashover voltage of dielectric films and highly consistent with the experiments, revealing the deterioration mechanism of the film’s flashover tolerance under the action of multiple flashovers. This provides analytical methods and a theoretical basis for improving the flashover tolerance strength of dielectric films.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 3","pages":"1297-1304"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10963670/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The peaking capacitor is a crucial component in the high-altitude electromagnetic pulse (HEMP) device. One of the significant challenges faced by the peaking capacitor is the reduction in the flashover tolerance strength of the dielectric film. This article simulates the electromagnetic environment of dielectric film and carries out flashover experiments to study the degradation characteristics of polypropylene (PP) and polyethylene terephthalate (PET) films under nanosecond pulse current injection. The effects of damage type and degree on the flashing process are analyzed by particle-in-cell Monte-Carlo-collision (PIC-MCC) method. The results show that the deformation characteristics of the film surface under nanosecond pulse current have a key influence on the flashing tolerance strength. Specifically, the raised and folded deformation of the PP film can increase the electron emission coefficient of the surface and expand the ionization range of the gas, which significantly enhances the number of electrons and reduces the flashover voltage. The microporous deformation of PET film increases the area of electron collision, but the pitted deformation restricts the diffusion of low-energy electrons. As a result, the number of electrons remains balanced, leading to a more stable flashover strength. The simulation can predict the flashover voltage of dielectric films and highly consistent with the experiments, revealing the deterioration mechanism of the film’s flashover tolerance under the action of multiple flashovers. This provides analytical methods and a theoretical basis for improving the flashover tolerance strength of dielectric films.
基于PIC-MCC仿真的纳秒脉冲电流下介质膜降解特性及机理研究
峰值电容是高空电磁脉冲(HEMP)装置中的关键部件。峰值电容器面临的一个重大挑战是介电膜的闪络容限强度的降低。本文通过模拟介质膜的电磁环境,进行闪络实验,研究了纳秒脉冲电流注入下聚丙烯(PP)和聚对苯二甲酸乙二醇酯(PET)薄膜的降解特性。采用粒子池内蒙特卡罗碰撞(PIC-MCC)方法分析了损伤类型和损伤程度对闪现过程的影响。结果表明,薄膜表面在纳秒脉冲电流作用下的变形特性对闪蒸容错强度有重要影响。具体而言,PP膜的凸起和折叠变形可以增加表面的电子发射系数,扩大气体的电离范围,从而显著增加电子数量,降低闪络电压。PET薄膜的微孔变形增加了电子碰撞的面积,但点状变形限制了低能电子的扩散。因此,电子数量保持平衡,导致更稳定的闪络强度。仿真可以预测介质膜的闪络电压,与实验结果高度吻合,揭示了介质膜在多重闪络作用下的闪络耐受性劣化机理。这为提高介电膜耐闪强度提供了分析方法和理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信