Residual vibration suppression of large-size flexible hydraulic manipulator under external disturbance with accurate positioning

IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Min Cheng , Xin Zhang , Ruqi Ding , Junhui Zhang , Bing Xu
{"title":"Residual vibration suppression of large-size flexible hydraulic manipulator under external disturbance with accurate positioning","authors":"Min Cheng ,&nbsp;Xin Zhang ,&nbsp;Ruqi Ding ,&nbsp;Junhui Zhang ,&nbsp;Bing Xu","doi":"10.1016/j.mechatronics.2025.103355","DOIUrl":null,"url":null,"abstract":"<div><div>To reduce residual vibration with accurate positioning for a flexible hydraulic manipulator, this paper proposes a dual-impulse vibration suppression method to implement concrete pumping tasks. Through sealing up the load-bearing chamber and allow fluid exchange in the non-bearing chamber by individual metering control (IMC), a valve-based volume control method without position sensors is proposed to replace direct positioning control of the end point. Besides, a dual-impulse valve controller is designed for making an online tradeoff between vibration suppression and accurate positioning under a specific pumping posture. Based on only pressure feedback, the amplitude and the time width of the two impulses are determined via system identification in advance and vibration prediction in real-time. Experimental tests are carried out using a 13m-length hydraulic manipulator under three different postures. The test results show that the vibration caused by disturbance can be effectively reduced using the proposed method, and more importantly the position of the end point can be maintained accurately.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103355"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000649","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To reduce residual vibration with accurate positioning for a flexible hydraulic manipulator, this paper proposes a dual-impulse vibration suppression method to implement concrete pumping tasks. Through sealing up the load-bearing chamber and allow fluid exchange in the non-bearing chamber by individual metering control (IMC), a valve-based volume control method without position sensors is proposed to replace direct positioning control of the end point. Besides, a dual-impulse valve controller is designed for making an online tradeoff between vibration suppression and accurate positioning under a specific pumping posture. Based on only pressure feedback, the amplitude and the time width of the two impulses are determined via system identification in advance and vibration prediction in real-time. Experimental tests are carried out using a 13m-length hydraulic manipulator under three different postures. The test results show that the vibration caused by disturbance can be effectively reduced using the proposed method, and more importantly the position of the end point can be maintained accurately.
基于精确定位的大型柔性液压机械臂外部扰动残余振动抑制
针对柔性液压机械臂在精确定位的前提下减少残余振动的问题,提出了一种实现混凝土泵送任务的双脉冲振动抑制方法。通过密封承载腔体,通过单独的计量控制(IMC)实现非承载腔体的流体交换,提出了一种基于阀门的无位置传感器容积控制方法,以取代终点的直接定位控制。此外,设计了双脉冲阀控制器,在特定泵送姿态下实现了振动抑制与精确定位的在线权衡。仅在压力反馈的基础上,通过系统的提前识别和实时振动预测来确定两个脉冲的幅值和时宽。利用长度为13m的液压机械手在三种不同的姿态下进行了实验测试。试验结果表明,采用该方法可以有效地减小扰动引起的振动,更重要的是可以准确地保持终点的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechatronics
Mechatronics 工程技术-工程:电子与电气
CiteScore
5.90
自引率
9.10%
发文量
0
审稿时长
109 days
期刊介绍: Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信