FPQ-iTransformer: A novel iTransformer-based model for accurate seawater salinity prediction

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Wanhai Jia, Jing Sun, Shaopeng Guan
{"title":"FPQ-iTransformer: A novel iTransformer-based model for accurate seawater salinity prediction","authors":"Wanhai Jia,&nbsp;Jing Sun,&nbsp;Shaopeng Guan","doi":"10.1016/j.envsoft.2025.106529","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate seawater salinity prediction is crucial for marine ecosystem management yet challenged by climate-driven dynamic fluctuations. We develop an enhanced iTransformer model FPQ-iTransformer incorporating three novel components: ProbSparse self-attention in the encoder for efficient temporal pattern extraction, a hybrid decoder combining multivariate attention with sparsity mechanisms for spatiotemporal dependency capture, and quantile loss integration for noise-robust prediction. Validated on British Columbia’s mariculture monitoring data, our framework demonstrates superior performance over eight state-of-the-art models (CNN, LSTM, Transformer, etc.), achieving 12.7% MAE reduction and 15.4% <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> improvement compared to the best baseline. The model’s prediction accuracy shows increasing advantages with extended time horizons, particularly in capturing abrupt salinity variations caused by extreme weather events. This advancement provides a reliable computational tool for real-time aquaculture decision-making and coastal environmental protection, with potential applicability to other hydrodynamic parameter predictions in climate-sensitive regions.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"192 ","pages":"Article 106529"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225002130","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate seawater salinity prediction is crucial for marine ecosystem management yet challenged by climate-driven dynamic fluctuations. We develop an enhanced iTransformer model FPQ-iTransformer incorporating three novel components: ProbSparse self-attention in the encoder for efficient temporal pattern extraction, a hybrid decoder combining multivariate attention with sparsity mechanisms for spatiotemporal dependency capture, and quantile loss integration for noise-robust prediction. Validated on British Columbia’s mariculture monitoring data, our framework demonstrates superior performance over eight state-of-the-art models (CNN, LSTM, Transformer, etc.), achieving 12.7% MAE reduction and 15.4% R2 improvement compared to the best baseline. The model’s prediction accuracy shows increasing advantages with extended time horizons, particularly in capturing abrupt salinity variations caused by extreme weather events. This advancement provides a reliable computational tool for real-time aquaculture decision-making and coastal environmental protection, with potential applicability to other hydrodynamic parameter predictions in climate-sensitive regions.
FPQ-iTransformer:一种新的基于itransformer的精确海水盐度预测模型
准确的海水盐度预测对海洋生态系统管理至关重要,但受到气候驱动的动态波动的挑战。我们开发了一种增强的ittransformer模型fpq - ittransformer,该模型包含三个新组件:编码器中的ProbSparse自关注用于有效的时间模式提取,混合解码器将多变量关注与稀疏机制结合起来用于时空依赖性捕获,以及分位数损失集成用于噪声鲁棒预测。通过不列颠哥伦比亚省的海水养殖监测数据验证,我们的框架在八种最先进的模型(CNN, LSTM, Transformer等)中表现出卓越的性能,与最佳基线相比,MAE降低了12.7%,R2提高了15.4%。随着时间的延长,该模式的预测精度显示出越来越大的优势,特别是在捕捉由极端天气事件引起的盐度突变方面。这一进展为实时水产养殖决策和沿海环境保护提供了可靠的计算工具,并可能适用于气候敏感地区的其他水动力参数预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信