Dielectric-metal nitride core-shell plasmonic nanostructures for photo-absorption and photothermal conversion of solar radiation

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Mohamed K. Zayed , Khalid O. Daffallah , Moustafa Ahmed , Mohamed Rashad , Hesham Fares
{"title":"Dielectric-metal nitride core-shell plasmonic nanostructures for photo-absorption and photothermal conversion of solar radiation","authors":"Mohamed K. Zayed ,&nbsp;Khalid O. Daffallah ,&nbsp;Moustafa Ahmed ,&nbsp;Mohamed Rashad ,&nbsp;Hesham Fares","doi":"10.1016/j.physb.2025.417429","DOIUrl":null,"url":null,"abstract":"<div><div>This work systematically examines dielectric-transition metal nitrides (TMNs) core <span><math><mrow><mo>−</mo></mrow></math></span> shell nanocomposites (SiO<sub>2</sub> <span><math><mrow><mo>−</mo></mrow></math></span> TiN and SiO<sub>2</sub> <span><math><mrow><mo>−</mo></mrow></math></span> ZrN), optimized geometrically for enhanced solar absorption and reduced thermoplasmonic heating. Numerical simulations based on Mie theory demonstrate that these nanoshells, whether embedded in air or water, surpass single-component TiN, ZrN, and Au nanospheres in achieving higher figures of merit (FoM) for solar energy absorption. It is shown that SiO<sub>2</sub> <span><math><mrow><mo>−</mo></mrow></math></span> TiN and SiO<sub>2</sub> <span><math><mrow><mo>−</mo></mrow></math></span> ZrN nanoshells allow for broader geometric optimization, resulting in elevated FoM with lower heating. In aqueous environments, TMN nanoshells exhibit minimal temperature increases across the solar spectrum, especially within the near <span><math><mrow><mo>−</mo></mrow></math></span> infrared biological window (∼700–1000 nm), making them promising for biomedical applications. Furthermore, these structures reduce the need for plasmonic materials while maintaining effective solar absorption, underscoring their cost-effectiveness. This study highlights the adaptability of TMN nanoshells in solar energy systems, including photovoltaics, photocatalysis, solar thermal power, and biomedical applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417429"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625005460","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This work systematically examines dielectric-transition metal nitrides (TMNs) core shell nanocomposites (SiO2 TiN and SiO2 ZrN), optimized geometrically for enhanced solar absorption and reduced thermoplasmonic heating. Numerical simulations based on Mie theory demonstrate that these nanoshells, whether embedded in air or water, surpass single-component TiN, ZrN, and Au nanospheres in achieving higher figures of merit (FoM) for solar energy absorption. It is shown that SiO2 TiN and SiO2 ZrN nanoshells allow for broader geometric optimization, resulting in elevated FoM with lower heating. In aqueous environments, TMN nanoshells exhibit minimal temperature increases across the solar spectrum, especially within the near infrared biological window (∼700–1000 nm), making them promising for biomedical applications. Furthermore, these structures reduce the need for plasmonic materials while maintaining effective solar absorption, underscoring their cost-effectiveness. This study highlights the adaptability of TMN nanoshells in solar energy systems, including photovoltaics, photocatalysis, solar thermal power, and biomedical applications.
用于太阳辐射光吸收和光热转换的介电-金属氮化核-壳等离子体纳米结构
本研究系统地研究了电介质-过渡金属氮化物(TMNs)核-壳纳米复合材料(SiO2 - TiN和SiO2 - ZrN),该复合材料经过几何优化,增强了太阳吸收,减少了热等离子体加热。基于Mie理论的数值模拟表明,这些纳米壳,无论是嵌入在空气中还是水中,在获得更高的太阳能吸收性能(FoM)方面都优于单组分TiN, ZrN和Au纳米球。结果表明,SiO2 - TiN和SiO2 - ZrN纳米壳允许更广泛的几何优化,从而在较低的加热条件下提高FoM。在水环境中,TMN纳米壳在整个太阳光谱中表现出最小的温度升高,特别是在近红外生物窗口(~ 700-1000 nm)内,使其在生物医学应用中具有前景。此外,这些结构减少了对等离子体材料的需求,同时保持了有效的太阳能吸收,强调了它们的成本效益。这项研究强调了TMN纳米壳在太阳能系统中的适应性,包括光伏、光催化、太阳能热发电和生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信