Jürgen Soom , Isabel Boavida , Renan Leite , Maria João Costa , Gert Toming , Mairo Leier , Jeffrey A. Tuhtan
{"title":"Open real-time, non-invasive fish detection and size estimation utilizing binocular camera system in a Portuguese river affected by hydropeaking","authors":"Jürgen Soom , Isabel Boavida , Renan Leite , Maria João Costa , Gert Toming , Mairo Leier , Jeffrey A. Tuhtan","doi":"10.1016/j.ecoinf.2025.103196","DOIUrl":null,"url":null,"abstract":"<div><div>The need for efficient approaches to track and assess fish behavior in rivers impacted by hydropeaking is increasing. Nonetheless, employing an automated camera system for underwater monitoring requires that the algorithms function under highly variable environmental conditions, which affect the ability to detect and assess fish size. Additionally, there is a lack of openly accessible freshwater fish classification and size estimation datasets. To address these limitations, we propose a binocular underwater fish monitoring system capable of real-time fish detection and size estimation. The system was deployed and tested over one week in two Portuguese rivers affected by hydropeaking. The week-long analysis also provided new insights regarding wild fish behavior in rivers affected by hydropeaking. Results indicate that hydropeaking strongly influences how fish may use instream flow refuges during hydropeaking. Fish were less frequently detected in the flow refuge during peak flow events, suggesting that the flow conditions created habitat instability and difficulty accessing the flow refuge. In contrast, fish in the non-hydropeaking river consistently used refuge areas, reinforcing their importance as shelter during natural flow variations. This study demonstrates the potential of a computer vision-based pipeline for real-time, fully automated fish monitoring of hydropeaking’s impacts on riverine fish. Additionally, we provide PTFish, an open dataset with 18,523 manually annotated frames featuring infrared and color video frames. These findings emphasize that automated, camera-based solutions for hydropeaking monitoring can be used to develop evidence-based mitigation strategies to sustain fish populations in rivers impacted by hydropeaking.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"90 ","pages":"Article 103196"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125002055","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The need for efficient approaches to track and assess fish behavior in rivers impacted by hydropeaking is increasing. Nonetheless, employing an automated camera system for underwater monitoring requires that the algorithms function under highly variable environmental conditions, which affect the ability to detect and assess fish size. Additionally, there is a lack of openly accessible freshwater fish classification and size estimation datasets. To address these limitations, we propose a binocular underwater fish monitoring system capable of real-time fish detection and size estimation. The system was deployed and tested over one week in two Portuguese rivers affected by hydropeaking. The week-long analysis also provided new insights regarding wild fish behavior in rivers affected by hydropeaking. Results indicate that hydropeaking strongly influences how fish may use instream flow refuges during hydropeaking. Fish were less frequently detected in the flow refuge during peak flow events, suggesting that the flow conditions created habitat instability and difficulty accessing the flow refuge. In contrast, fish in the non-hydropeaking river consistently used refuge areas, reinforcing their importance as shelter during natural flow variations. This study demonstrates the potential of a computer vision-based pipeline for real-time, fully automated fish monitoring of hydropeaking’s impacts on riverine fish. Additionally, we provide PTFish, an open dataset with 18,523 manually annotated frames featuring infrared and color video frames. These findings emphasize that automated, camera-based solutions for hydropeaking monitoring can be used to develop evidence-based mitigation strategies to sustain fish populations in rivers impacted by hydropeaking.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.