Water-abundant and tough structured composite hydrogels via ion transfer printing

IF 4.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jingping Wu, Zhengjin Wang, Xiao Liu, Yong Zheng, Yang Gao, Jian Hu
{"title":"Water-abundant and tough structured composite hydrogels via ion transfer printing","authors":"Jingping Wu,&nbsp;Zhengjin Wang,&nbsp;Xiao Liu,&nbsp;Yong Zheng,&nbsp;Yang Gao,&nbsp;Jian Hu","doi":"10.1016/j.eml.2025.102367","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels with high water content and toughness are essential to various applications in smart materials and biomimetic systems. However, there exists a conflict between water content and toughness. To enhance toughness, high polymer chain density or water-free reinforcements are usually introduced into hydrogel matrices, which inevitably lead to a reduction in water content. In this study, we present a facile method for preparing water-abundant and tough hydrogels through ion transfer printing. By utilizing sodium alginate/polyacrylamide (Alg/PAAm) hydrogels as a flexible matrix and Fe<sup>3+</sup> ions as stiffening agents, we selectively introduce Fe<sup>3+</sup> ions into predefined regions of the hydrogel matrix, resulting in well-structured composite hydrogels comprising soft Alg/PAAm matrix and hard Fe<sup>3+</sup>-crosslinked Alg/PAAm (Fe-Alg/PAAm) fibers. As both the matrix and fibers are stretchable and water-abundant, the composites exhibit impressive stretchability (<em>ε</em>∼1000 %) and water content (<em>p</em>∼95 %). Notably, the alternating arrangement of the soft and hard fiber/matrix architecture effectively prevents crack propagation during loading by inducing stress deconcentration at the crack tip, thereby leading to exceptional toughness (<em>Γ</em>∼22000 J/m<sup>2</sup>). This simple method introduces a universal design strategy for constructing stretchable, water-abundant, and tough hydrogels, considering that ionic crosslinking with multi-valent cation crosslinkers is widely used in hydrogels. Beyond the Fe<sup>3+</sup> and Alg/PAAm hydrogel system discussed here, this concept can be extended to various combinations of multi-valent ions and hydrogel networks containing opposite charges.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"78 ","pages":"Article 102367"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000793","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels with high water content and toughness are essential to various applications in smart materials and biomimetic systems. However, there exists a conflict between water content and toughness. To enhance toughness, high polymer chain density or water-free reinforcements are usually introduced into hydrogel matrices, which inevitably lead to a reduction in water content. In this study, we present a facile method for preparing water-abundant and tough hydrogels through ion transfer printing. By utilizing sodium alginate/polyacrylamide (Alg/PAAm) hydrogels as a flexible matrix and Fe3+ ions as stiffening agents, we selectively introduce Fe3+ ions into predefined regions of the hydrogel matrix, resulting in well-structured composite hydrogels comprising soft Alg/PAAm matrix and hard Fe3+-crosslinked Alg/PAAm (Fe-Alg/PAAm) fibers. As both the matrix and fibers are stretchable and water-abundant, the composites exhibit impressive stretchability (ε∼1000 %) and water content (p∼95 %). Notably, the alternating arrangement of the soft and hard fiber/matrix architecture effectively prevents crack propagation during loading by inducing stress deconcentration at the crack tip, thereby leading to exceptional toughness (Γ∼22000 J/m2). This simple method introduces a universal design strategy for constructing stretchable, water-abundant, and tough hydrogels, considering that ionic crosslinking with multi-valent cation crosslinkers is widely used in hydrogels. Beyond the Fe3+ and Alg/PAAm hydrogel system discussed here, this concept can be extended to various combinations of multi-valent ions and hydrogel networks containing opposite charges.
通过离子转移印花制备的水凝胶
具有高含水量和韧性的水凝胶在智能材料和仿生系统的各种应用中是必不可少的。但其含水量与韧性之间存在矛盾。为了增强韧性,通常在水凝胶基质中引入高聚物链密度或无水增强剂,这不可避免地导致含水量的降低。在这项研究中,我们提出了一种简单的方法,通过离子转移印刷制备富水和坚韧的水凝胶。利用海藻酸钠/聚丙烯酰胺(Alg/PAAm)水凝胶作为柔性基质,Fe3+离子作为增强剂,我们选择性地将Fe3+离子引入水凝胶基质的预定区域,得到结构良好的复合水凝胶,包括软Alg/PAAm基质和硬Fe3+交联Alg/PAAm (Fe-Alg/PAAm)纤维。由于基体和纤维都具有可拉伸性和丰富的水分,复合材料表现出令人印象深刻的拉伸性(ε ~ 1000 %)和含水量(p ~ 95 %)。值得注意的是,软硬纤维/基体结构的交替排列通过诱导裂纹尖端的应力分散,有效地防止了加载过程中的裂纹扩展,从而获得了优异的韧性(Γ ~ 22000 J/m2)。考虑到离子交联与多价阳离子交联剂在水凝胶中的广泛应用,这种简单的方法为构建可拉伸、富水和坚韧的水凝胶提供了一种通用的设计策略。除了这里讨论的Fe3+和Alg/PAAm水凝胶体系之外,这个概念还可以扩展到各种多价离子的组合和含有相反电荷的水凝胶网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信