Yuwei Bai , Jianglong Li , Xueqian Wu , Mei Zhang , Yaping Zhang , Ping Chen , Jiajing Ma , Suzhen Zhang , Haicheng Zhang , Xiangjun Li , Zhigang Yang
{"title":"Mult-omics analysis reveals the lipid-lowering effects of sea buckthorn and milk thistle solid beverage in hyperlipidemic rats","authors":"Yuwei Bai , Jianglong Li , Xueqian Wu , Mei Zhang , Yaping Zhang , Ping Chen , Jiajing Ma , Suzhen Zhang , Haicheng Zhang , Xiangjun Li , Zhigang Yang","doi":"10.1016/j.phymed.2025.156920","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Hyperlipidemia is a common metabolic disorder and a risk factor for cardiovascular disease. The traditional medicine herb, <em>Hippophae rhamnoides</em> L., known as sea buckthorn<em>,</em> has anti-obesity and lipid-lowering effects, while <em>Silybum marianum</em> (L.) Gaertn, known as milk thistle, has hepatoprotective properties and exhibits antioxidant effects.</div></div><div><h3>Purpose</h3><div>To evaluate the effect of sea buckthorn and milk thistle solid beverage (H-S solid beverage) in alleviating hyperlipidemia in rats and explore the underlying mechanisms by analyzing plasma and liver metabolomics, lipidomics, and liver transcriptomics.</div></div><div><h3>Methods</h3><div>A hyperlipidemic rat model was established after 2 weeks of high-fat diet (HFD) feeding in Sprague Dawley rats. The administered doses of H-S solid beverage were 0.30 g/kg/d, 0.15 g/kg/d and 0.075 g/kg/d. Serum biochemical parameter detection, histopathological section analysis, untargeted plasma and liver metabolomics, lipidomics, and liver transcriptomics were performed to determine the therapeutic effects of H-S solid beverage and predict the related pathways in rats with hyperlipidemia. Changes in genes and proteins related to lipid metabolism were detected using real-time quantitative polymerase chain reaction and western blotting.</div></div><div><h3>Results</h3><div>Eighty-nine components were identified in H-S solid beverage using ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry, with flavonoids being the major constituents. The H-S solid beverage significantly reduced body weight, liver index, body fat percentage, lipid accumulation, and liver injury in HFD-fed rats. Fatty acids (FA), bile acid, phosphatidyl ethanolamine, phosphatidylcholine, triglyceride, cholesterol ester, diglyceride and phosphatidylinositol levels were significantly altered in the liver and plasma. Moreover, the transcriptomic analysis suggested that H-S solid beverage significantly altered the hepatic gene expression of cholesterol synthesis (<em>Pdk4, Hmgcs1</em>, and <em>Dhcr24</em>), lipogenesis (<em>Scd, Angptl4</em>, and <em>Angptl8</em>), and FA β-oxidation (<em>Cpt1α, Pparδ, Acsl, Pgc-1α</em>, and <em>Pla2g2d</em>).</div></div><div><h3>Conclusion</h3><div>The solid beverage of sea buckthorn and milk thistle was firstly demonstrated to ameliorate HFD-induced hyperlipidemia. The lipid-lowering and hepatoprotective effects of H-S solid beverage significantly regulated cholesterol synthesis and de novo lipogenesis, as well as FA β-oxidation. In summary, this study highlights the potential of H-S solid beverages for the treatment of hyperlipidemia.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"144 ","pages":"Article 156920"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325005586","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Hyperlipidemia is a common metabolic disorder and a risk factor for cardiovascular disease. The traditional medicine herb, Hippophae rhamnoides L., known as sea buckthorn, has anti-obesity and lipid-lowering effects, while Silybum marianum (L.) Gaertn, known as milk thistle, has hepatoprotective properties and exhibits antioxidant effects.
Purpose
To evaluate the effect of sea buckthorn and milk thistle solid beverage (H-S solid beverage) in alleviating hyperlipidemia in rats and explore the underlying mechanisms by analyzing plasma and liver metabolomics, lipidomics, and liver transcriptomics.
Methods
A hyperlipidemic rat model was established after 2 weeks of high-fat diet (HFD) feeding in Sprague Dawley rats. The administered doses of H-S solid beverage were 0.30 g/kg/d, 0.15 g/kg/d and 0.075 g/kg/d. Serum biochemical parameter detection, histopathological section analysis, untargeted plasma and liver metabolomics, lipidomics, and liver transcriptomics were performed to determine the therapeutic effects of H-S solid beverage and predict the related pathways in rats with hyperlipidemia. Changes in genes and proteins related to lipid metabolism were detected using real-time quantitative polymerase chain reaction and western blotting.
Results
Eighty-nine components were identified in H-S solid beverage using ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry, with flavonoids being the major constituents. The H-S solid beverage significantly reduced body weight, liver index, body fat percentage, lipid accumulation, and liver injury in HFD-fed rats. Fatty acids (FA), bile acid, phosphatidyl ethanolamine, phosphatidylcholine, triglyceride, cholesterol ester, diglyceride and phosphatidylinositol levels were significantly altered in the liver and plasma. Moreover, the transcriptomic analysis suggested that H-S solid beverage significantly altered the hepatic gene expression of cholesterol synthesis (Pdk4, Hmgcs1, and Dhcr24), lipogenesis (Scd, Angptl4, and Angptl8), and FA β-oxidation (Cpt1α, Pparδ, Acsl, Pgc-1α, and Pla2g2d).
Conclusion
The solid beverage of sea buckthorn and milk thistle was firstly demonstrated to ameliorate HFD-induced hyperlipidemia. The lipid-lowering and hepatoprotective effects of H-S solid beverage significantly regulated cholesterol synthesis and de novo lipogenesis, as well as FA β-oxidation. In summary, this study highlights the potential of H-S solid beverages for the treatment of hyperlipidemia.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.