{"title":"Statistical model of time-varying underwater acoustic channel in a shallow water using local scattering function","authors":"Biao Liu , Ning Jia , Jianchun Huang , Biao Wang","doi":"10.1016/j.apacoust.2025.110875","DOIUrl":null,"url":null,"abstract":"<div><div>The wide-sense stationary uncorrelated scattering assumption is not applicable to underwater acoustic channels. For the local time-frequency (TF) features of underwater acoustic channels, this paper studied a refined statistical model for the local TF root mean square (RMS) delay and Doppler shift at different frequencies based on the local scattering function (LSF). We presented a discrete form of the LSF with time- and frequency-domain sliding, which was then used to analyze the local characteristics of underwater acoustic channels and obtain the TF RMS delay and Doppler shift. Based on the measured channels under shallow-water conditions, the TF RMS delay and Doppler shift were characterized using the Gaussian mixture (GM) and Burr distributions, respectively. When deep or shallow fading occurs in a certain frequency range, the expectation, variance, and weighting factor of the GM distribution fluctuate notably, indicating complex multipath scattering. As the frequency increases, the scale parameter and first shape parameter of the Burr distribution reflect the gradual dispersion of the TF RMS Doppler shift.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"240 ","pages":"Article 110875"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25003470","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The wide-sense stationary uncorrelated scattering assumption is not applicable to underwater acoustic channels. For the local time-frequency (TF) features of underwater acoustic channels, this paper studied a refined statistical model for the local TF root mean square (RMS) delay and Doppler shift at different frequencies based on the local scattering function (LSF). We presented a discrete form of the LSF with time- and frequency-domain sliding, which was then used to analyze the local characteristics of underwater acoustic channels and obtain the TF RMS delay and Doppler shift. Based on the measured channels under shallow-water conditions, the TF RMS delay and Doppler shift were characterized using the Gaussian mixture (GM) and Burr distributions, respectively. When deep or shallow fading occurs in a certain frequency range, the expectation, variance, and weighting factor of the GM distribution fluctuate notably, indicating complex multipath scattering. As the frequency increases, the scale parameter and first shape parameter of the Burr distribution reflect the gradual dispersion of the TF RMS Doppler shift.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.