Hao Zhang , Xueyang Xing , Yiteng Du , Tingchun Li , Jianxin Yu
{"title":"An approach of rock blasting simulation of equivalent blasting dynamic-static action","authors":"Hao Zhang , Xueyang Xing , Yiteng Du , Tingchun Li , Jianxin Yu","doi":"10.1016/j.undsp.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>Various blasting methods in underground engineering involve rock-breaking processes in enclosed spaces. A whole process of rock blasting is completed by the combination of blasting waves and explosion gas. The two actions exhibit different blasting fracturing characteristics in different time and spatial stages. In this study, an approach of rock blasting simulation of equivalent blasting dynamic-static action is proposed. A set of model blasting experiments under plane strain conditions are carried out to verify from the aspects of feasibility and reliability. The results show that the new method realizes the effective coupling of blast waves and explosion gas in terms of rock-breaking characteristics and pressure wave characteristics. The blasting effects have a high similarity between the simulation result and experimental result, and the maximum error on the damage range and the peak stress is 4.02% and 8.90%. The rock breaking mechanisms of three blasting methods in underground engineering that affect the blasting waves and explosion gas are discussed. The superiority of the new method is evaluated. When the decoupling coefficient is increased, an optimal decoupling coefficient is discovered, which reflects the consistency between the blasting results and the actual situation. When the confining pressure is increased, the inhibition ability on quasi-static action is obviously stronger than that of blasting dynamic action. In slotting blasting, the quasi-static action is the main contributor in the formation of holes penetration. The simulation results identify the rock breaking contributions between blasting waves and explosion gas well. The new simulation method can provide a reliable tool for understanding of the rock-blasting mechanism and restoring the whole blasting process.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"23 ","pages":"Pages 68-88"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246796742500025X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Various blasting methods in underground engineering involve rock-breaking processes in enclosed spaces. A whole process of rock blasting is completed by the combination of blasting waves and explosion gas. The two actions exhibit different blasting fracturing characteristics in different time and spatial stages. In this study, an approach of rock blasting simulation of equivalent blasting dynamic-static action is proposed. A set of model blasting experiments under plane strain conditions are carried out to verify from the aspects of feasibility and reliability. The results show that the new method realizes the effective coupling of blast waves and explosion gas in terms of rock-breaking characteristics and pressure wave characteristics. The blasting effects have a high similarity between the simulation result and experimental result, and the maximum error on the damage range and the peak stress is 4.02% and 8.90%. The rock breaking mechanisms of three blasting methods in underground engineering that affect the blasting waves and explosion gas are discussed. The superiority of the new method is evaluated. When the decoupling coefficient is increased, an optimal decoupling coefficient is discovered, which reflects the consistency between the blasting results and the actual situation. When the confining pressure is increased, the inhibition ability on quasi-static action is obviously stronger than that of blasting dynamic action. In slotting blasting, the quasi-static action is the main contributor in the formation of holes penetration. The simulation results identify the rock breaking contributions between blasting waves and explosion gas well. The new simulation method can provide a reliable tool for understanding of the rock-blasting mechanism and restoring the whole blasting process.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.