Human aldo-keto reductase (AKR) 1C1 and 1C2 act as coactivators of pregnane X receptor, a master regulator of drug-metabolizing and gluconeogenesis enzymes
{"title":"Human aldo-keto reductase (AKR) 1C1 and 1C2 act as coactivators of pregnane X receptor, a master regulator of drug-metabolizing and gluconeogenesis enzymes","authors":"Rei Mitamura , Seiya Takemoto , Yuka Aoyama , Koki Morita , Yuichiro Higuchi , Shotaro Uehara , Nao Yoneda , Hiroshi Suemizu , Tatsuki Fukami , Masataka Nakano , Miki Nakajima","doi":"10.1016/j.dmpk.2025.101481","DOIUrl":null,"url":null,"abstract":"<div><div>The aldo-keto reductase (AKR) 1C subfamily, comprising AKR1C1-1C4, plays a crucial role in drug metabolism and hormone biosynthesis. Recent studies have identified AKR1C3 as a co-activator of the androgen receptor. This study aimed to investigate whether AKR1Cs function as regulators of the pregnane X receptor (PXR), a member of the nuclear receptor superfamily, which upregulates drug-metabolizing enzymes such as cytochrome P450 (CYP) 3A4. Rifampicin-activated CYP3A4 induction was attenuated by AKR1C1/1C2 knockdown in ShP51 cells (PXR-overexpressing HepG2 cells), HepaRG cells, and HepaSH cells (hepatocytes from humanized liver mice). Co-immunoprecipitation analysis revealed that AKR1Cs interact with PXR. Immunofluorescent staining revealed that AKR1Cs are translocated into the nucleus with PXR by rifampicin in HepaRG cells. These results suggested that AKR1C1/1C2 has an ability to enhance transactivity of PXR. Consistent with the results of knockdown experiments, PXR-mediated CYP3A4 induction was significantly attenuated by treatment with AKR1C1/1C2 inhibitors, diazepam or flunitrazepam, in ShP51, HepaRG, and HepaSH cells. Furthermore, the induction of CYP2B6, CYP2C9, glucose 6-phosphatase, and phosphoenolpyruvate carboxykinase 1, all regulated by PXR, was attenuated by AKR1C1/1C2 inhibitors. Collectively, we demonstrated that AKR1C1/1C2 upregulates PXR transactivation. Clinically used drugs that inhibit AKR1C1/1C2 may suppress PXR-mediated transactivation of genes encoding drug-metabolizing and gluconeogenesis enzymes.</div></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"62 ","pages":"Article 101481"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347436725004318","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The aldo-keto reductase (AKR) 1C subfamily, comprising AKR1C1-1C4, plays a crucial role in drug metabolism and hormone biosynthesis. Recent studies have identified AKR1C3 as a co-activator of the androgen receptor. This study aimed to investigate whether AKR1Cs function as regulators of the pregnane X receptor (PXR), a member of the nuclear receptor superfamily, which upregulates drug-metabolizing enzymes such as cytochrome P450 (CYP) 3A4. Rifampicin-activated CYP3A4 induction was attenuated by AKR1C1/1C2 knockdown in ShP51 cells (PXR-overexpressing HepG2 cells), HepaRG cells, and HepaSH cells (hepatocytes from humanized liver mice). Co-immunoprecipitation analysis revealed that AKR1Cs interact with PXR. Immunofluorescent staining revealed that AKR1Cs are translocated into the nucleus with PXR by rifampicin in HepaRG cells. These results suggested that AKR1C1/1C2 has an ability to enhance transactivity of PXR. Consistent with the results of knockdown experiments, PXR-mediated CYP3A4 induction was significantly attenuated by treatment with AKR1C1/1C2 inhibitors, diazepam or flunitrazepam, in ShP51, HepaRG, and HepaSH cells. Furthermore, the induction of CYP2B6, CYP2C9, glucose 6-phosphatase, and phosphoenolpyruvate carboxykinase 1, all regulated by PXR, was attenuated by AKR1C1/1C2 inhibitors. Collectively, we demonstrated that AKR1C1/1C2 upregulates PXR transactivation. Clinically used drugs that inhibit AKR1C1/1C2 may suppress PXR-mediated transactivation of genes encoding drug-metabolizing and gluconeogenesis enzymes.
期刊介绍:
DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows:
- Drug metabolism / Biotransformation
- Pharmacokinetics and pharmacodynamics
- Toxicokinetics and toxicodynamics
- Drug-drug interaction / Drug-food interaction
- Mechanism of drug absorption and disposition (including transporter)
- Drug delivery system
- Clinical pharmacy and pharmacology
- Analytical method
- Factors affecting drug metabolism and transport
- Expression of genes for drug-metabolizing enzymes and transporters
- Pharmacogenetics and pharmacogenomics
- Pharmacoepidemiology.