Joris Depoortere, Johan Driesen, Johan Suykens, Hussain Syed Kazmi
{"title":"SolNet: Open-source deep learning models for photovoltaic power forecasting across the globe","authors":"Joris Depoortere, Johan Driesen, Johan Suykens, Hussain Syed Kazmi","doi":"10.1016/j.ijforecast.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning models have gained increasing prominence in recent years in solar photovoltaic (PV) forecasting. One drawback of these models is that they require a lot of high-quality data to perform well. This is often infeasible in practice, due to poor measurement infrastructure in legacy systems and the rapid build-up of new solar systems across the world. This paper proposes SolNet: a novel, general-purpose, multivariate solar power forecaster, which addresses these challenges by using a two-step forecasting pipeline that incorporates transfer learning from abundant synthetic data generated from PVGIS, before fine-tuning on observational data.</div><div>Using actual production data from hundreds of sites in The Netherlands, Australia, and Belgium, we show that SolNet improves forecasting performance over data-scarce settings as well as baseline models. We find transfer learning benefits to be the strongest when only limited observational data are available. At the same time, we provide several guidelines and considerations for transfer learning practitioners, as our results show that weather data, seasonal patterns, and possible misspecification in source location can have a major impact on the results. The SolNet models created in this way are applicable for any land-based solar photovoltaic system across the planet to obtain improved forecasting capabilities.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 3","pages":"Pages 1223-1236"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001316","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning models have gained increasing prominence in recent years in solar photovoltaic (PV) forecasting. One drawback of these models is that they require a lot of high-quality data to perform well. This is often infeasible in practice, due to poor measurement infrastructure in legacy systems and the rapid build-up of new solar systems across the world. This paper proposes SolNet: a novel, general-purpose, multivariate solar power forecaster, which addresses these challenges by using a two-step forecasting pipeline that incorporates transfer learning from abundant synthetic data generated from PVGIS, before fine-tuning on observational data.
Using actual production data from hundreds of sites in The Netherlands, Australia, and Belgium, we show that SolNet improves forecasting performance over data-scarce settings as well as baseline models. We find transfer learning benefits to be the strongest when only limited observational data are available. At the same time, we provide several guidelines and considerations for transfer learning practitioners, as our results show that weather data, seasonal patterns, and possible misspecification in source location can have a major impact on the results. The SolNet models created in this way are applicable for any land-based solar photovoltaic system across the planet to obtain improved forecasting capabilities.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.