{"title":"Stock return predictability in the frequency domain","authors":"Zhifeng Dai , Fuwei Jiang , Jie Kang , Bowen Xue","doi":"10.1016/j.ijforecast.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the role of time–frequency information in dimension reduction prediction of stock returns. Using the long-term wavelet component of monthly S&P500 excess returns as supervision, we employ a machine learning method to extract the common predictive factor from prevalent macroeconomic variables and construct a new macroeconomic index aligned with stock return prediction. The macroeconomic index exhibits significant predictive power, both in and out of sample, at the market and portfolio levels. It outperforms all individual macroeconomic predictors and the factors based on higher frequency information of realized returns. Our findings demonstrate substantial economic value of the new index in asset allocation. Moreover, we also observe a complementary relation between macroeconomic index and investor sentiment. The predictive power is most pronounced during high-economic-uncertainty periods when investors are likely to underreact to fundamental signals and stems from cash flow predictability channel.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 3","pages":"Pages 1126-1147"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001249","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the role of time–frequency information in dimension reduction prediction of stock returns. Using the long-term wavelet component of monthly S&P500 excess returns as supervision, we employ a machine learning method to extract the common predictive factor from prevalent macroeconomic variables and construct a new macroeconomic index aligned with stock return prediction. The macroeconomic index exhibits significant predictive power, both in and out of sample, at the market and portfolio levels. It outperforms all individual macroeconomic predictors and the factors based on higher frequency information of realized returns. Our findings demonstrate substantial economic value of the new index in asset allocation. Moreover, we also observe a complementary relation between macroeconomic index and investor sentiment. The predictive power is most pronounced during high-economic-uncertainty periods when investors are likely to underreact to fundamental signals and stems from cash flow predictability channel.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.