Zhihong Chen, Yusheng Zhang, Jie Ding, Zhijie Li, Yuan Tian, Mingze Zeng, Xiaoyang Wu, Borui Su, Junzhong Jiang, Chengheng Wu, Dan Wei, Jing Sun, Chwee Teck Lim, Hongsong Fan
{"title":"Hydrogel-Based Multifunctional Deep Brain Probe for Neural Sensing, Manipulation, and Therapy","authors":"Zhihong Chen, Yusheng Zhang, Jie Ding, Zhijie Li, Yuan Tian, Mingze Zeng, Xiaoyang Wu, Borui Su, Junzhong Jiang, Chengheng Wu, Dan Wei, Jing Sun, Chwee Teck Lim, Hongsong Fan","doi":"10.1021/acsnano.5c03865","DOIUrl":null,"url":null,"abstract":"Implantable deep brain probes (DBPs) constitute a vital component of brain–machine interfaces, facilitating direct interaction between neural tissues and the external environment. Most multifunctional DBPs used for neural system sensing and modulation are currently fabricated through thermal tapering of polymeric materials. However, this approach faces a fundamental challenge in selecting materials that simultaneously accommodate the thermal stretching process and yet match the modulus of brain tissues. Here, we introduce a kind of multifunctional hydrogel-based fiber (HybF) designed for neural sensing, on-demand deep brain manipulation, and photodynamic therapy, and was achieved by integrating ion chelation/dechelation effects with templating methods throughout the entire wet-spinning process. With a low bending stiffness of approximately 0.3 N/m and a high conductivity of about 97 S/m at 1 kHz, HybF facilitates a high-quality signal recording (SNR ∼10) while minimizing immune rejection. It also effectively mediates deep brain optogenetic stimulation, successfully manipulating the behavior of hippocampal neurons in <i>hSyn-ChrimsonR-tdTomato</i> SD rats. Importantly, by leveraging HybF, this study explores the use of a spatiotemporally controllable photodynamic strategy in antiepilepsy, in which the high-amplitude abnormal electrical discharges were instantaneously eliminated without affecting normal cognitive/memory abilities. The above innovative approach established a distinct paradigm for deep brain manipulation and degenerative disease treatment, providing interesting insights into brain circuits and bioelectronic devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"15 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03865","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Implantable deep brain probes (DBPs) constitute a vital component of brain–machine interfaces, facilitating direct interaction between neural tissues and the external environment. Most multifunctional DBPs used for neural system sensing and modulation are currently fabricated through thermal tapering of polymeric materials. However, this approach faces a fundamental challenge in selecting materials that simultaneously accommodate the thermal stretching process and yet match the modulus of brain tissues. Here, we introduce a kind of multifunctional hydrogel-based fiber (HybF) designed for neural sensing, on-demand deep brain manipulation, and photodynamic therapy, and was achieved by integrating ion chelation/dechelation effects with templating methods throughout the entire wet-spinning process. With a low bending stiffness of approximately 0.3 N/m and a high conductivity of about 97 S/m at 1 kHz, HybF facilitates a high-quality signal recording (SNR ∼10) while minimizing immune rejection. It also effectively mediates deep brain optogenetic stimulation, successfully manipulating the behavior of hippocampal neurons in hSyn-ChrimsonR-tdTomato SD rats. Importantly, by leveraging HybF, this study explores the use of a spatiotemporally controllable photodynamic strategy in antiepilepsy, in which the high-amplitude abnormal electrical discharges were instantaneously eliminated without affecting normal cognitive/memory abilities. The above innovative approach established a distinct paradigm for deep brain manipulation and degenerative disease treatment, providing interesting insights into brain circuits and bioelectronic devices.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.