Songyun Lin, Marina Hirao, Philipp Hartmann, Markus Leutzsch, Marie Sophie Sterling, Alessandro Vetere, Sandra Klimmek, Heike Hinrichs, Johanna Marie Mengeler, Johannes Lehmann, Jan Samsonowicz-Gόrski, Florian Berger, Tobias Ritter
{"title":"A selenoxide for single-atom protein modification of tyrosine residues enabled by water-resistant chalcogen and hydrogen bonding","authors":"Songyun Lin, Marina Hirao, Philipp Hartmann, Markus Leutzsch, Marie Sophie Sterling, Alessandro Vetere, Sandra Klimmek, Heike Hinrichs, Johanna Marie Mengeler, Johannes Lehmann, Jan Samsonowicz-Gόrski, Florian Berger, Tobias Ritter","doi":"10.1038/s41557-025-01842-8","DOIUrl":null,"url":null,"abstract":"<p>Post-translational modifications such as phosphorylation and acetylation are often minor structural modifications that can have profound effects on protein structure and thus broaden protein functions. Nevertheless, studying these effects directly is often out of reach because no general chemistry exists to introduce small modifications selectively; either a large, stable linker structure is selectively installed on protein residues, or a small substituent is introduced at the risk of low selectivity due to the use of reactive, indiscriminate molecules. Here we report a C–H functionalization reaction of tyrosine residues to access peptides and proteins modified by small structural changes including single-atom substitutions. A rationally designed selenoxide introduces a versatile selenonium linchpin featuring a C<sub>tyr</sub>–Se bond that can be used for further transformations at specific tyrosine residues. Key to the advance is the interplay of water-resistant, intramolecular chalcogen and hydrogen bonding of the selenoxide reagent, which allows chemo- and site-selective electrophilic aromatic substitution of tyrosine residues in aqueous solutions.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"20 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01842-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Post-translational modifications such as phosphorylation and acetylation are often minor structural modifications that can have profound effects on protein structure and thus broaden protein functions. Nevertheless, studying these effects directly is often out of reach because no general chemistry exists to introduce small modifications selectively; either a large, stable linker structure is selectively installed on protein residues, or a small substituent is introduced at the risk of low selectivity due to the use of reactive, indiscriminate molecules. Here we report a C–H functionalization reaction of tyrosine residues to access peptides and proteins modified by small structural changes including single-atom substitutions. A rationally designed selenoxide introduces a versatile selenonium linchpin featuring a Ctyr–Se bond that can be used for further transformations at specific tyrosine residues. Key to the advance is the interplay of water-resistant, intramolecular chalcogen and hydrogen bonding of the selenoxide reagent, which allows chemo- and site-selective electrophilic aromatic substitution of tyrosine residues in aqueous solutions.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.