Identifying T cell antigen at the atomic level with graph convolutional network

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jinhao Que, Guangfu Xue, Tao Wang, Xiyun Jin, Zuxiang Wang, Yideng Cai, Wenyi Yang, Meng Luo, Qian Ding, Jinwei Zhang, Yilin Wang, Yuexin Yang, Fenglan Pang, Yi Hui, Zheng Wei, Jun Xiong, Shouping Xu, Yi Lin, Haoxiu Sun, Pingping Wang, Zhaochun Xu, Qinghua Jiang
{"title":"Identifying T cell antigen at the atomic level with graph convolutional network","authors":"Jinhao Que, Guangfu Xue, Tao Wang, Xiyun Jin, Zuxiang Wang, Yideng Cai, Wenyi Yang, Meng Luo, Qian Ding, Jinwei Zhang, Yilin Wang, Yuexin Yang, Fenglan Pang, Yi Hui, Zheng Wei, Jun Xiong, Shouping Xu, Yi Lin, Haoxiu Sun, Pingping Wang, Zhaochun Xu, Qinghua Jiang","doi":"10.1038/s41467-025-60461-6","DOIUrl":null,"url":null,"abstract":"<p>Precise identification of T cell antigens in silico is crucial for the development of cancer mRNA vaccines. However, current computational methods only utilize sequence-level rather than atomic level features to identify T cell antigens, which results in poor representation of those that activate immune responses. Here we propose deepAntigen, a graph convolutional network-based framework, to identify T cell antigens at the atomic level. deepAntigen achieves excellent performance both in the prediction of antigen-human leukocyte antigen (HLA) binding and antigen-T cell receptor (TCR) interactions, which can provide comprehensive guidance for identification of T cell antigens. The tumor neoantigens predicted by deepAntigen in lung, breast and pancreatic cancer patients are experimentally validated through ELISPOT assays, which detect successful activation of CD8<sup>+</sup> T cells to release IFN-γ. Overall, deepAntigen can accurately identify T cell antigens at the atomic level, which could accelerate the development of personalized neoantigen targeted immunotherapies for cancer patients.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"260 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60461-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Precise identification of T cell antigens in silico is crucial for the development of cancer mRNA vaccines. However, current computational methods only utilize sequence-level rather than atomic level features to identify T cell antigens, which results in poor representation of those that activate immune responses. Here we propose deepAntigen, a graph convolutional network-based framework, to identify T cell antigens at the atomic level. deepAntigen achieves excellent performance both in the prediction of antigen-human leukocyte antigen (HLA) binding and antigen-T cell receptor (TCR) interactions, which can provide comprehensive guidance for identification of T cell antigens. The tumor neoantigens predicted by deepAntigen in lung, breast and pancreatic cancer patients are experimentally validated through ELISPOT assays, which detect successful activation of CD8+ T cells to release IFN-γ. Overall, deepAntigen can accurately identify T cell antigens at the atomic level, which could accelerate the development of personalized neoantigen targeted immunotherapies for cancer patients.

Abstract Image

用图卷积网络在原子水平上识别T细胞抗原
在硅片上精确鉴定T细胞抗原对于癌症mRNA疫苗的开发至关重要。然而,目前的计算方法仅利用序列水平而不是原子水平的特征来识别T细胞抗原,这导致那些激活免疫反应的抗原的代表性较差。在这里,我们提出deepAntigen,一个基于图卷积网络的框架,在原子水平上识别T细胞抗原。deepAntigen在预测抗原-人白细胞抗原(HLA)结合和抗原-T细胞受体(TCR)相互作用方面均取得了优异的成绩,可为T细胞抗原的鉴定提供全面的指导。通过ELISPOT实验验证了deepAntigen预测的肺癌、乳腺癌和胰腺癌患者的肿瘤新抗原,检测到CD8+ T细胞成功激活释放IFN-γ。总的来说,deepAntigen能够在原子水平上准确地识别T细胞抗原,这将加速癌症患者个性化新抗原靶向免疫治疗的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信