Hour-Level and Air-Stable Organic Long-Persistent Luminescence from Organic–Inorganic Hybrid Materials

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Linhao Guan, Qiuqin Huang, Rujun Yang, Suhua Jiang, Yixi Zhuang, Peiyuan Wang, Yong Gao, Rong-Jun Xie, Qidan Ling, Zhenghuan Lin
{"title":"Hour-Level and Air-Stable Organic Long-Persistent Luminescence from Organic–Inorganic Hybrid Materials","authors":"Linhao Guan, Qiuqin Huang, Rujun Yang, Suhua Jiang, Yixi Zhuang, Peiyuan Wang, Yong Gao, Rong-Jun Xie, Qidan Ling, Zhenghuan Lin","doi":"10.1002/adma.202419213","DOIUrl":null,"url":null,"abstract":"Organic long-persistent luminescence (OLPL) materials show important application prospects in bioimaging due to their low biotoxicity and the ability to eliminate the interference of background fluorescence. However, OLPL materials suffer from poor environmental stability and short afterglow times. Herein, by introducing the phosphorescent guest 2, 3-naphthalimide (NAI) into the B<sub>2</sub>O<sub>3</sub> (BO) matrix using a solvent-free method in an air atmosphere, an organic–inorganic hybrid material NAI/BO is obtained, exhibiting OLPL lasting for more than 20 h, visible to the naked eye for up to 180 min. Photoluminescence and thermoluminescence spectra reveal that the OLPL originates from pure phosphorescence of NAI, and is induced by inorganic defects generated by oxygen vacancies in BO. The NAI electrons in the excited state can be captured by the defect, then detrapped through the thermal activation process, and eventually returned to the triplet state of NAI, thereby achieving OLPL emission. NAI/BO is successfully applied in vivo imaging stimulated in vitro. In addition, the universality of this strategy is verified by changing the phosphorescent guest molecules, enabling the regulation of OLPL from green to orange–red light. These results provide an important foundation for the design and development of stable OLPL materials and the practical applications in biological imaging.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"15 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419213","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic long-persistent luminescence (OLPL) materials show important application prospects in bioimaging due to their low biotoxicity and the ability to eliminate the interference of background fluorescence. However, OLPL materials suffer from poor environmental stability and short afterglow times. Herein, by introducing the phosphorescent guest 2, 3-naphthalimide (NAI) into the B2O3 (BO) matrix using a solvent-free method in an air atmosphere, an organic–inorganic hybrid material NAI/BO is obtained, exhibiting OLPL lasting for more than 20 h, visible to the naked eye for up to 180 min. Photoluminescence and thermoluminescence spectra reveal that the OLPL originates from pure phosphorescence of NAI, and is induced by inorganic defects generated by oxygen vacancies in BO. The NAI electrons in the excited state can be captured by the defect, then detrapped through the thermal activation process, and eventually returned to the triplet state of NAI, thereby achieving OLPL emission. NAI/BO is successfully applied in vivo imaging stimulated in vitro. In addition, the universality of this strategy is verified by changing the phosphorescent guest molecules, enabling the regulation of OLPL from green to orange–red light. These results provide an important foundation for the design and development of stable OLPL materials and the practical applications in biological imaging.

Abstract Image

有机-无机杂化材料的小时级和空气稳定有机长持久发光
有机长持续发光(OLPL)材料具有低生物毒性和消除背景荧光干扰的能力,在生物成像领域具有重要的应用前景。然而,OLPL材料的环境稳定性差,余辉时间短。,通过引入磷光客人2,3-naphthalimide(奈)到B2O3 (BO)矩阵使用无溶剂法在空气氛围,一种有机-无机杂化材料奈/ BO,展示OLPL持续超过20 h,肉眼可见180分钟。光致发光和热致发光光谱表明,奈OLPL来源于纯粹的磷光,由无机诱导缺陷生成的氧空位在BO。处于激发态的NAI电子可以被缺陷捕获,然后通过热活化过程脱除,最终回到NAI的三重态,从而实现OLPL发射。NAI/BO成功应用于体外刺激的体内成像。此外,通过改变磷光客体分子,使OLPL从绿光调节到橙红光,验证了该策略的普遍性。这些结果为设计和开发稳定的OLPL材料以及在生物成像中的实际应用提供了重要的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信