Edward M. Bryant, Andrés Jordán, Joel D. Hartman, Daniel Bayliss, Elyar Sedaghati, Khalid Barkaoui, Jamila Chouqar, Francisco J. Pozuelos, Daniel P. Thorngren, Mathilde Timmermans, Jose Manuel Almenara, Igor V. Chilingarian, Karen A. Collins, Tianjun Gan, Steve B. Howell, Norio Narita, Enric Palle, Benjamin V. Rackham, Amaury H. M. J. Triaud, Gaspar Á. Bakos, Rafael Brahm, Melissa J. Hobson, Vincent Van Eylen, Pedro J. Amado, Luc Arnold, Xavier Bonfils, Artem Burdanov, Charles Cadieux, Douglas A. Caldwell, Victor Casanova, David Charbonneau, Catherine A. Clark, Kevin I. Collins, Tansu Daylan, Georgina Dransfield, Brice-Olivier Demory, Elsa Ducrot, Gareb Fernández-Rodríguez, Izuru Fukuda, Akihiko Fukui, Michaël Gillon, Rebecca Gore, Matthew J. Hooton, Kai Ikuta, Emmanuel Jehin, Jon M. Jenkins, Alan M. Levine, Colin Littlefield, Felipe Murgas, Kendra Nguyen, Hannu Parviainen, Didier Queloz, S. Seager, Daniel Sebastian, Gregor Srdoc, R. Vanderspek, Joshua N. Winn, Julien de Wit, Sebastián Zúñiga-Fernández
{"title":"A transiting giant planet in orbit around a 0.2-solar-mass host star","authors":"Edward M. Bryant, Andrés Jordán, Joel D. Hartman, Daniel Bayliss, Elyar Sedaghati, Khalid Barkaoui, Jamila Chouqar, Francisco J. Pozuelos, Daniel P. Thorngren, Mathilde Timmermans, Jose Manuel Almenara, Igor V. Chilingarian, Karen A. Collins, Tianjun Gan, Steve B. Howell, Norio Narita, Enric Palle, Benjamin V. Rackham, Amaury H. M. J. Triaud, Gaspar Á. Bakos, Rafael Brahm, Melissa J. Hobson, Vincent Van Eylen, Pedro J. Amado, Luc Arnold, Xavier Bonfils, Artem Burdanov, Charles Cadieux, Douglas A. Caldwell, Victor Casanova, David Charbonneau, Catherine A. Clark, Kevin I. Collins, Tansu Daylan, Georgina Dransfield, Brice-Olivier Demory, Elsa Ducrot, Gareb Fernández-Rodríguez, Izuru Fukuda, Akihiko Fukui, Michaël Gillon, Rebecca Gore, Matthew J. Hooton, Kai Ikuta, Emmanuel Jehin, Jon M. Jenkins, Alan M. Levine, Colin Littlefield, Felipe Murgas, Kendra Nguyen, Hannu Parviainen, Didier Queloz, S. Seager, Daniel Sebastian, Gregor Srdoc, R. Vanderspek, Joshua N. Winn, Julien de Wit, Sebastián Zúñiga-Fernández","doi":"10.1038/s41550-025-02552-4","DOIUrl":null,"url":null,"abstract":"<p>Planet formation models indicate that the formation of giant planets is substantially harder around low-mass stars due to the scaling of protoplanetary disc masses with stellar mass. The discovery of giant planets orbiting such low-mass stars thus imposes strong constraints on giant planet formation processes. Here we report the discovery of a transiting giant planet orbiting a 0.207 ± 0.011 <i>M</i><sub><span>⊙</span></sub> star. The planet, TOI-6894 b, has a mass and radius of <i>M</i><sub>P</sub> = 0.168 ± 0.022 <i>M</i><sub>J</sub> (53.4 ± 7.1 <i>M</i><sub><span>⊕</span></sub>) and <i>R</i><sub>P</sub> = 0.855 ± 0.022 <i>R</i><sub>J</sub> and probably includes 12 ± 2 <i>M</i><sub><span>⊕</span></sub> of metals. The discovery of TOI-6894 b highlights the need for a better understanding of giant planet formation mechanisms and the protoplanetary disc environments in which they occur. The extremely deep transits (17% depth) make TOI-6894 b one of the most accessible exoplanetary giants for atmospheric characterization observations, which will be key for fully interpreting the formation history of this notable system and for the study of atmospheric methane chemistry.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02552-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Planet formation models indicate that the formation of giant planets is substantially harder around low-mass stars due to the scaling of protoplanetary disc masses with stellar mass. The discovery of giant planets orbiting such low-mass stars thus imposes strong constraints on giant planet formation processes. Here we report the discovery of a transiting giant planet orbiting a 0.207 ± 0.011 M⊙ star. The planet, TOI-6894 b, has a mass and radius of MP = 0.168 ± 0.022 MJ (53.4 ± 7.1 M⊕) and RP = 0.855 ± 0.022 RJ and probably includes 12 ± 2 M⊕ of metals. The discovery of TOI-6894 b highlights the need for a better understanding of giant planet formation mechanisms and the protoplanetary disc environments in which they occur. The extremely deep transits (17% depth) make TOI-6894 b one of the most accessible exoplanetary giants for atmospheric characterization observations, which will be key for fully interpreting the formation history of this notable system and for the study of atmospheric methane chemistry.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.