High-efficiency optical training of itinerant two-dimensional magnets

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Ti Xie, Jierui Liang, Dhritiman Bhattacharya, Hasitha Suriya Arachchige, Victor M. Yakovenko, David G. Mandrus, Zi Qiang Qiu, Kai Liu, Cheng Gong
{"title":"High-efficiency optical training of itinerant two-dimensional magnets","authors":"Ti Xie, Jierui Liang, Dhritiman Bhattacharya, Hasitha Suriya Arachchige, Victor M. Yakovenko, David G. Mandrus, Zi Qiang Qiu, Kai Liu, Cheng Gong","doi":"10.1038/s41567-025-02928-3","DOIUrl":null,"url":null,"abstract":"<p>Cooling a material into a ferromagnetic phase can produce arbitrary metastable patterns of magnetic domains rather than a spatially uniform magnetic state. Control over the formation of these patterns could provide non-chemical methods of creating spintronic devices. Here we demonstrate high-efficiency optical training of magnetic domain formation in the two-dimensional van der Waals magnet Fe<sub>3</sub>GeTe<sub>2</sub> during zero-field cooling. At ultralow power densities of around 20 µW µm<sup>−2</sup>, electrons excited by linearly polarized photons catalyse the formation of larger domains for both spin orientations. Furthermore, circularly polarized photons of the same low power density produce a single domain with its magnetization orientation determined by the optical helicity. We propose that the emergence of this single domain is caused by the optically injected spin-polarized electrons acting as initial magnetic seeds that guide different regions of the sample into the same spin orientation. Our work presents an unconventional route to tailoring spin textures in two-dimensional materials.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02928-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cooling a material into a ferromagnetic phase can produce arbitrary metastable patterns of magnetic domains rather than a spatially uniform magnetic state. Control over the formation of these patterns could provide non-chemical methods of creating spintronic devices. Here we demonstrate high-efficiency optical training of magnetic domain formation in the two-dimensional van der Waals magnet Fe3GeTe2 during zero-field cooling. At ultralow power densities of around 20 µW µm−2, electrons excited by linearly polarized photons catalyse the formation of larger domains for both spin orientations. Furthermore, circularly polarized photons of the same low power density produce a single domain with its magnetization orientation determined by the optical helicity. We propose that the emergence of this single domain is caused by the optically injected spin-polarized electrons acting as initial magnetic seeds that guide different regions of the sample into the same spin orientation. Our work presents an unconventional route to tailoring spin textures in two-dimensional materials.

Abstract Image

流动二维磁体的高效光学训练
将材料冷却成铁磁相可以产生任意亚稳的磁畴模式,而不是空间均匀的磁态。控制这些模式的形成可以提供制造自旋电子器件的非化学方法。本文证明了二维范德华磁体Fe3GeTe2在零场冷却过程中磁畴形成的高效光学训练。在大约20 μ Wµm−2的超低功率密度下,由线极化光子激发的电子在两个自旋方向上催化形成更大的畴。此外,同样低功率密度的圆偏振光子产生了一个单畴,其磁化方向由光螺旋度决定。我们提出,这种单畴的出现是由光学注入的自旋极化电子作为初始磁种子引起的,这些磁种子引导样品的不同区域进入相同的自旋方向。我们的工作提出了一种在二维材料中裁剪自旋纹理的非常规途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信