Majorana tensor decomposition: a unifying framework for decompositions of fermionic Hamiltonians to linear combination of unitaries

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Ignacio Loaiza, Aritra Sankar Brahmachari and Artur F Izmaylov
{"title":"Majorana tensor decomposition: a unifying framework for decompositions of fermionic Hamiltonians to linear combination of unitaries","authors":"Ignacio Loaiza, Aritra Sankar Brahmachari and Artur F Izmaylov","doi":"10.1088/2058-9565/add9c1","DOIUrl":null,"url":null,"abstract":"Linear combination of unitaries (LCU) decompositions have become a key tool for encoding operators on quantum computers, enabling efficient implementations of arbitrary operators. In particular, LCU methods provide a way to encode the electronic structure Hamiltonian into quantum circuits. Over the years, various decomposition techniques have been developed for this purpose. Here, we introduce the Majorana tensor decomposition, a framework that unifies existing LCU approaches and introduces novel decompositions using low-rank tensor factorizations. We benchmark a range of decomposition techniques on small molecular systems and hydrogen chains of increasing sizes, evaluating their performance across different LCU methods.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"10 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/add9c1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Linear combination of unitaries (LCU) decompositions have become a key tool for encoding operators on quantum computers, enabling efficient implementations of arbitrary operators. In particular, LCU methods provide a way to encode the electronic structure Hamiltonian into quantum circuits. Over the years, various decomposition techniques have been developed for this purpose. Here, we introduce the Majorana tensor decomposition, a framework that unifies existing LCU approaches and introduces novel decompositions using low-rank tensor factorizations. We benchmark a range of decomposition techniques on small molecular systems and hydrogen chains of increasing sizes, evaluating their performance across different LCU methods.
马约拉纳张量分解:费米子哈密顿分解为酉元线性组合的统一框架
一元线性组合分解(LCU)已成为量子计算机上编码算子的关键工具,使任意算子的有效实现成为可能。特别是,LCU方法提供了一种将电子结构哈密顿量编码到量子电路中的方法。多年来,为此目的开发了各种分解技术。在这里,我们介绍了Majorana张量分解,这是一个统一现有LCU方法的框架,并引入了使用低秩张量分解的新分解。我们在小分子系统和越来越大的氢链上对一系列分解技术进行了基准测试,评估了它们在不同LCU方法中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信