Galaxy Cluster Characterization with Machine Learning Techniques

M. Sadikov, J. Hlavacek-Larrondo, L. Perreault-Levasseur, C. L. Rhea, M. McDonald, M. Ntampaka and J. ZuHone
{"title":"Galaxy Cluster Characterization with Machine Learning Techniques","authors":"M. Sadikov, J. Hlavacek-Larrondo, L. Perreault-Levasseur, C. L. Rhea, M. McDonald, M. Ntampaka and J. ZuHone","doi":"10.3847/1538-4357/adcd69","DOIUrl":null,"url":null,"abstract":"We present an analysis of the X-ray properties of the galaxy cluster population in the z = 0 snapshot of the IllustrisTNG simulations, utilizing machine learning techniques to perform clustering and regression tasks. We examine five properties of the hot gas (the central cooling time, the central electron density, the central entropy excess, the concentration parameter, and the cuspiness) which are commonly used as classification metrics to identify cool core (CC), weak cool core (WCC) and non-cool core (NCC) clusters of galaxies. Using mock Chandra X-ray images as inputs, we first explore an unsupervised clustering scheme to see how the resulting groups correlate with the CC/WCC/NCC classification based on the different criteria. We observe that the groups replicate almost exactly the separation of the galaxy cluster images when classifying them based on the concentration parameter. We then move on to a regression task, utilizing a ResNet model to predict the value of all five properties. The network is able to achieve a mean percentage error of 1.8% for the central cooling time, and a balanced accuracy of 0.83 on the concentration parameter, making them the best-performing metrics. Finally, we use simulation-based inference to extract posterior distributions for the network predictions. Our neural network simultaneously predicts all five classification metrics using only mock Chandra X-ray images. This study demonstrates that machine learning is a viable approach for analyzing and classifying the large galaxy cluster data sets that will soon become available through current and upcoming X-ray surveys, such as the extended Roentgen Survey with an Imaging Telescope Array.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adcd69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an analysis of the X-ray properties of the galaxy cluster population in the z = 0 snapshot of the IllustrisTNG simulations, utilizing machine learning techniques to perform clustering and regression tasks. We examine five properties of the hot gas (the central cooling time, the central electron density, the central entropy excess, the concentration parameter, and the cuspiness) which are commonly used as classification metrics to identify cool core (CC), weak cool core (WCC) and non-cool core (NCC) clusters of galaxies. Using mock Chandra X-ray images as inputs, we first explore an unsupervised clustering scheme to see how the resulting groups correlate with the CC/WCC/NCC classification based on the different criteria. We observe that the groups replicate almost exactly the separation of the galaxy cluster images when classifying them based on the concentration parameter. We then move on to a regression task, utilizing a ResNet model to predict the value of all five properties. The network is able to achieve a mean percentage error of 1.8% for the central cooling time, and a balanced accuracy of 0.83 on the concentration parameter, making them the best-performing metrics. Finally, we use simulation-based inference to extract posterior distributions for the network predictions. Our neural network simultaneously predicts all five classification metrics using only mock Chandra X-ray images. This study demonstrates that machine learning is a viable approach for analyzing and classifying the large galaxy cluster data sets that will soon become available through current and upcoming X-ray surveys, such as the extended Roentgen Survey with an Imaging Telescope Array.
用机器学习技术表征星系团
我们在IllustrisTNG模拟的z = 0快照中分析了星系团人口的x射线特性,利用机器学习技术执行聚类和回归任务。我们研究了热气体的五个特性(中心冷却时间、中心电子密度、中心熵过剩、浓度参数和密度),这些特性通常被用作识别冷核(CC)、弱冷核(WCC)和非冷核(NCC)星系团的分类指标。使用模拟钱德拉x射线图像作为输入,我们首先探索了一种无监督聚类方案,以了解基于不同标准的CC/WCC/NCC分类如何与结果组相关联。我们观察到,当基于浓度参数对星系团图像进行分类时,这些群几乎完全复制了星系团图像的分离。然后我们继续进行回归任务,利用ResNet模型来预测所有五个属性的值。该网络能够实现中央冷却时间的平均百分比误差为1.8%,浓度参数的平衡精度为0.83,使其成为性能最佳的指标。最后,我们使用基于模拟的推理来提取网络预测的后验分布。我们的神经网络仅使用模拟钱德拉x射线图像同时预测所有五个分类指标。这项研究表明,机器学习是一种分析和分类大型星系团数据集的可行方法,这些数据集将很快通过当前和即将到来的x射线调查获得,例如使用成像望远镜阵列的扩展伦琴调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信