Sunny Sharma, Xinfu Jiao, Jun Yang, Kelvin Y. Kwan, Megerditch Kiledjian
{"title":"Extracellular exosomal RNAs are glyco-modified","authors":"Sunny Sharma, Xinfu Jiao, Jun Yang, Kelvin Y. Kwan, Megerditch Kiledjian","doi":"10.1038/s41556-025-01682-1","DOIUrl":null,"url":null,"abstract":"<p>Epitranscriptomic modifications play pivotal roles in regulating RNA stability, localization and function. Recently, glycosylation has also emerged as an RNA modification, though its functional implications remain unclear. Here we report that metabolic labelling with a <i><span>N</span></i>-azidoacetylgalactosamine-tetraacylated bioorthogonal probe in mammalian cells reveals small, non-coding, glyco-modified RNAs (glycoRNAs) that exhibit unusual stability imparted by their resistance to RNases. These glycoRNAs are primarily found within exosome vesicles as intraluminal cargo, distinct from recently reported cell surface glycoRNAs. Importantly, exosomal glycoRNAs can be transferred to naive cells, highlighting a role in intercellular RNA communication. The inhibition of exosome biogenesis leads to intracellular glycoRNA accumulation, while blocking glycan transfer to proteins reduces glycoRNA sorting into exosomes. These findings suggest a regulatory link between protein and RNA glycosylation in exosome cargo selection. Our studies support a functional role for glycosylation in targeting RNA into exosomes and uncover potential avenues for exosome-based diagnostics and RNA therapeutic applications.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"38 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-025-01682-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epitranscriptomic modifications play pivotal roles in regulating RNA stability, localization and function. Recently, glycosylation has also emerged as an RNA modification, though its functional implications remain unclear. Here we report that metabolic labelling with a N-azidoacetylgalactosamine-tetraacylated bioorthogonal probe in mammalian cells reveals small, non-coding, glyco-modified RNAs (glycoRNAs) that exhibit unusual stability imparted by their resistance to RNases. These glycoRNAs are primarily found within exosome vesicles as intraluminal cargo, distinct from recently reported cell surface glycoRNAs. Importantly, exosomal glycoRNAs can be transferred to naive cells, highlighting a role in intercellular RNA communication. The inhibition of exosome biogenesis leads to intracellular glycoRNA accumulation, while blocking glycan transfer to proteins reduces glycoRNA sorting into exosomes. These findings suggest a regulatory link between protein and RNA glycosylation in exosome cargo selection. Our studies support a functional role for glycosylation in targeting RNA into exosomes and uncover potential avenues for exosome-based diagnostics and RNA therapeutic applications.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology