A Review on the Estimation of Coronary Fractional Flow Reserve Using Artificial Intelligence.

IF 0.6
Mehmet Nazir Kaçar, İlkay Ulusoy, Çağrı Yayla
{"title":"A Review on the Estimation of Coronary Fractional Flow Reserve Using Artificial Intelligence.","authors":"Mehmet Nazir Kaçar, İlkay Ulusoy, Çağrı Yayla","doi":"10.5543/tkda.2025.41168","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary artery disease (CAD) is the leading cause of death worldwide. The most widely used and precise method for diagnosing CAD is invasive coronary angiography (ICA). Fractional flow reserve (FFR) is an index of the functional severity of coronary stenoses that requires additional invasive intervention during ICA. With advancements in artificial intelligence (AI) technology, the estimation of FFR using AI is gaining popularity to meet the need for fast, accurate, and less invasive FFR estimation that can integrate into physicians' workflows. This review presents the current progress in this area by analyzing studies employing various approaches.</p>","PeriodicalId":94261,"journal":{"name":"Turk Kardiyoloji Dernegi arsivi : Turk Kardiyoloji Derneginin yayin organidir","volume":"53 4","pages":"275-280"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turk Kardiyoloji Dernegi arsivi : Turk Kardiyoloji Derneginin yayin organidir","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5543/tkda.2025.41168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coronary artery disease (CAD) is the leading cause of death worldwide. The most widely used and precise method for diagnosing CAD is invasive coronary angiography (ICA). Fractional flow reserve (FFR) is an index of the functional severity of coronary stenoses that requires additional invasive intervention during ICA. With advancements in artificial intelligence (AI) technology, the estimation of FFR using AI is gaining popularity to meet the need for fast, accurate, and less invasive FFR estimation that can integrate into physicians' workflows. This review presents the current progress in this area by analyzing studies employing various approaches.

应用人工智能估计冠状动脉血流储备的研究进展。
冠状动脉疾病(CAD)是世界范围内导致死亡的主要原因。诊断CAD最广泛、最精确的方法是有创冠状动脉造影(ICA)。血流储备分数(FFR)是冠状动脉狭窄功能严重程度的指标,在ICA期间需要额外的侵入性干预。随着人工智能(AI)技术的进步,使用人工智能进行FFR估计越来越受欢迎,以满足快速、准确、侵入性较小的FFR估计需求,并可集成到医生的工作流程中。本文通过对各种研究方法的分析,介绍了这一领域的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信