Bistability between acute and chronic states in a Model of Hepatitis B Virus Dynamics

IF 1.8 4区 数学 Q2 BIOLOGY
Nazia Afrin , Stanca M. Ciupe , Jessica M. Conway , Hayriye Gulbudak
{"title":"Bistability between acute and chronic states in a Model of Hepatitis B Virus Dynamics","authors":"Nazia Afrin ,&nbsp;Stanca M. Ciupe ,&nbsp;Jessica M. Conway ,&nbsp;Hayriye Gulbudak","doi":"10.1016/j.mbs.2025.109467","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the mechanisms responsible for different clinical outcomes following hepatitis B infection requires a systems investigation of dynamical interactions between the virus and the immune system. To help elucidate mechanisms of protection and those responsible from transition from acute to chronic disease, we developed a deterministic mathematical model of hepatitis B infection that accounts for cytotoxic immune responses resulting in infected cell death, non-cytotoxic immune responses resulting in infected cell cure and protective immunity from reinfection, and cell proliferation. We analyzed the model and presented outcomes based on three important disease markers: the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the infected cells death rate <span><math><mi>δ</mi></math></span> (describing the effect of cytotoxic immune responses), and the liver carrying capacity <span><math><mi>K</mi></math></span> (describing the liver susceptibility to infection). Using asymptotic and bifurcation analysis techniques, we determined regions where virus is cleared, virus persists, and where clearance-persistence is determined by the size of viral inoculum. These results can guide the development of personalized intervention.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"387 ","pages":"Article 109467"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425000938","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the mechanisms responsible for different clinical outcomes following hepatitis B infection requires a systems investigation of dynamical interactions between the virus and the immune system. To help elucidate mechanisms of protection and those responsible from transition from acute to chronic disease, we developed a deterministic mathematical model of hepatitis B infection that accounts for cytotoxic immune responses resulting in infected cell death, non-cytotoxic immune responses resulting in infected cell cure and protective immunity from reinfection, and cell proliferation. We analyzed the model and presented outcomes based on three important disease markers: the basic reproduction number R0, the infected cells death rate δ (describing the effect of cytotoxic immune responses), and the liver carrying capacity K (describing the liver susceptibility to infection). Using asymptotic and bifurcation analysis techniques, we determined regions where virus is cleared, virus persists, and where clearance-persistence is determined by the size of viral inoculum. These results can guide the development of personalized intervention.
乙型肝炎病毒动力学模型中急性和慢性状态的双稳定性。
了解乙肝感染后不同临床结果的机制需要对病毒和免疫系统之间的动态相互作用进行系统调查。为了帮助阐明保护机制以及从急性疾病向慢性疾病过渡的原因,我们建立了乙型肝炎感染的确定性数学模型,该模型解释了导致感染细胞死亡的细胞毒性免疫反应、导致感染细胞治愈的非细胞毒性免疫反应和防止再感染的保护性免疫以及细胞增殖。我们对模型进行了分析,并根据三个重要的疾病标志物给出了结果:基本繁殖数R0、感染细胞死亡率δ(描述细胞毒性免疫反应的效果)和肝脏承载能力K(描述肝脏对感染的易感性)。使用渐近和分岔分析技术,我们确定了病毒被清除的区域,病毒持续存在的区域,以及清除-持续存在的区域由病毒接种量的大小决定。这些结果可以指导个性化干预的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信