[Artificial intelligence capabilities in multiple sclerosis].

Q3 Medicine
A N Belova, G E Sheiko, E M Rakhmanova, A N Boyko
{"title":"[Artificial intelligence capabilities in multiple sclerosis].","authors":"A N Belova, G E Sheiko, E M Rakhmanova, A N Boyko","doi":"10.17116/jnevro202512505114","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To systematize current data on the potential use of artificial intelligence (AI) in multiple sclerosis (MS) research.</p><p><strong>Material and methods: </strong>The literature search was performed in electronic search engines Scopus, eLibrary, PubMed using the following keywords: multiple sclerosis, diagnosis, prediction, artificial intelligence, machine learning. Scientific articles published between 2018 and 2024 were selected for the review.</p><p><strong>Results: </strong>A summary of AI technologies and machine learning (ML) models is provided. It is shown that AI opens up vast opportunities for studying the pathogenetic mechanisms of MS development, can help solve differential diagnosis problems, and predict the course of the disease. Examples of the use of ML algorithms to identify MS biomarkers, early diagnosis and prediction of disease activity are described. Restrictions on the use of AI in clinical practice are considered, including the need for access to large databases to create reliable ML algorithms, the lack of information understandable to clinicians about decision-making mechanisms, the risk of system errors and unreliable results, the suitability of the ML model results for those populations used to train this model only.</p><p><strong>Conclusion: </strong>Implementing all AI capabilities in the management of MS patients requires the joint efforts of information technology specialists, scientists, and clinicians.</p>","PeriodicalId":56370,"journal":{"name":"Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova","volume":"125 5","pages":"14-21"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/jnevro202512505114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To systematize current data on the potential use of artificial intelligence (AI) in multiple sclerosis (MS) research.

Material and methods: The literature search was performed in electronic search engines Scopus, eLibrary, PubMed using the following keywords: multiple sclerosis, diagnosis, prediction, artificial intelligence, machine learning. Scientific articles published between 2018 and 2024 were selected for the review.

Results: A summary of AI technologies and machine learning (ML) models is provided. It is shown that AI opens up vast opportunities for studying the pathogenetic mechanisms of MS development, can help solve differential diagnosis problems, and predict the course of the disease. Examples of the use of ML algorithms to identify MS biomarkers, early diagnosis and prediction of disease activity are described. Restrictions on the use of AI in clinical practice are considered, including the need for access to large databases to create reliable ML algorithms, the lack of information understandable to clinicians about decision-making mechanisms, the risk of system errors and unreliable results, the suitability of the ML model results for those populations used to train this model only.

Conclusion: Implementing all AI capabilities in the management of MS patients requires the joint efforts of information technology specialists, scientists, and clinicians.

[多发性硬化症的人工智能能力]。
目的:对人工智能(AI)在多发性硬化症(MS)研究中的潜在应用进行系统整理。材料与方法:在电子搜索引擎Scopus、eLibrary、PubMed中进行文献检索,检索关键词:多发性硬化症、诊断、预测、人工智能、机器学习。2018年至2024年间发表的科学论文被选为审查对象。结果:总结了人工智能技术和机器学习(ML)模型。研究表明,人工智能为研究多发性硬化症的发病机制开辟了广阔的机会,可以帮助解决鉴别诊断问题,并预测疾病的进程。本文描述了使用ML算法识别MS生物标志物、早期诊断和疾病活动预测的例子。考虑了在临床实践中使用人工智能的限制,包括需要访问大型数据库以创建可靠的机器学习算法,缺乏临床医生可以理解的决策机制信息,系统错误和不可靠结果的风险,机器学习模型结果仅用于训练该模型的人群的适用性。结论:在MS患者管理中实现所有AI功能需要信息技术专家、科学家和临床医生的共同努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
287
审稿时长
3-6 weeks
期刊介绍: Одно из старейших медицинских изданий России, основанное в 1901 году. Создание журнала связано с именами выдающихся деятелей отечественной медицины, вошедших в историю мировой психиатрии и неврологии, – С.С. Корсакова и А.Я. Кожевникова. Широкий диапазон предлагаемых журналом материалов и разнообразие форм их представления привлекают внимание научных работников и врачей, опытных и начинающих медиков, причем не только неврологов и психиатров, но и специалистов смежных областей медицины.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信