Sensitivity analysis for the probability of benefit in randomized controlled trials with a binary treatment and a binary outcome.

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Iuliana Ciocănea-Teodorescu, Erin E Gabriel, Arvid Sjölander
{"title":"Sensitivity analysis for the probability of benefit in randomized controlled trials with a binary treatment and a binary outcome.","authors":"Iuliana Ciocănea-Teodorescu, Erin E Gabriel, Arvid Sjölander","doi":"10.1093/biostatistics/kxaf011","DOIUrl":null,"url":null,"abstract":"<p><p>For a comprehensive understanding of the effect of a given treatment on an outcome of interest, quantification of individual treatment heterogeneity is essential, alongside estimation of the average causal effect. However, even in randomized controlled trials, quantities such as the probability of benefit or the probability of harm are not identifiable, since multiple potential outcomes cannot be observed simultaneously for the same individual. We propose a sensitivity analysis for the probability of benefit in randomized controlled trial settings with a binary treatment and a binary outcome, by quantifying the deviation from conditional independence of the two potential outcomes, given a set of measured prognostic baseline covariates. We do this using a marginal sensitivity analysis parameter that does not depend on the number or complexity of the measured covariates. We provide a guide to estimation and interpretation, and illustrate our method in simulations, as well as using a real data example from a randomized controlled trial studying the effect of umbilical vein oxytocin administration on the need for manual removal of the placenta during birth.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129078/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For a comprehensive understanding of the effect of a given treatment on an outcome of interest, quantification of individual treatment heterogeneity is essential, alongside estimation of the average causal effect. However, even in randomized controlled trials, quantities such as the probability of benefit or the probability of harm are not identifiable, since multiple potential outcomes cannot be observed simultaneously for the same individual. We propose a sensitivity analysis for the probability of benefit in randomized controlled trial settings with a binary treatment and a binary outcome, by quantifying the deviation from conditional independence of the two potential outcomes, given a set of measured prognostic baseline covariates. We do this using a marginal sensitivity analysis parameter that does not depend on the number or complexity of the measured covariates. We provide a guide to estimation and interpretation, and illustrate our method in simulations, as well as using a real data example from a randomized controlled trial studying the effect of umbilical vein oxytocin administration on the need for manual removal of the placenta during birth.

采用二元治疗和二元结局的随机对照试验中获益概率的敏感性分析。
为了全面了解给定治疗对目标结果的影响,除了估计平均因果效应外,还必须对个体治疗异质性进行量化。然而,即使在随机对照试验中,也无法确定诸如获益概率或伤害概率之类的数量,因为无法同时观察到同一个体的多种潜在结果。我们提出在随机对照试验设置中采用二元治疗和二元结果的获益概率的敏感性分析,通过量化两种潜在结果的条件独立性偏差,给定一组测量的预后基线协变量。我们使用不依赖于测量协变量的数量或复杂性的边际灵敏度分析参数来做到这一点。我们提供了一个估计和解释的指南,并在模拟中说明了我们的方法,并使用了一个随机对照试验的真实数据示例,研究了脐静脉催产素对分娩时人工移除胎盘需求的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信