Iuliana Ciocănea-Teodorescu, Erin E Gabriel, Arvid Sjölander
{"title":"Sensitivity analysis for the probability of benefit in randomized controlled trials with a binary treatment and a binary outcome.","authors":"Iuliana Ciocănea-Teodorescu, Erin E Gabriel, Arvid Sjölander","doi":"10.1093/biostatistics/kxaf011","DOIUrl":null,"url":null,"abstract":"<p><p>For a comprehensive understanding of the effect of a given treatment on an outcome of interest, quantification of individual treatment heterogeneity is essential, alongside estimation of the average causal effect. However, even in randomized controlled trials, quantities such as the probability of benefit or the probability of harm are not identifiable, since multiple potential outcomes cannot be observed simultaneously for the same individual. We propose a sensitivity analysis for the probability of benefit in randomized controlled trial settings with a binary treatment and a binary outcome, by quantifying the deviation from conditional independence of the two potential outcomes, given a set of measured prognostic baseline covariates. We do this using a marginal sensitivity analysis parameter that does not depend on the number or complexity of the measured covariates. We provide a guide to estimation and interpretation, and illustrate our method in simulations, as well as using a real data example from a randomized controlled trial studying the effect of umbilical vein oxytocin administration on the need for manual removal of the placenta during birth.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129078/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For a comprehensive understanding of the effect of a given treatment on an outcome of interest, quantification of individual treatment heterogeneity is essential, alongside estimation of the average causal effect. However, even in randomized controlled trials, quantities such as the probability of benefit or the probability of harm are not identifiable, since multiple potential outcomes cannot be observed simultaneously for the same individual. We propose a sensitivity analysis for the probability of benefit in randomized controlled trial settings with a binary treatment and a binary outcome, by quantifying the deviation from conditional independence of the two potential outcomes, given a set of measured prognostic baseline covariates. We do this using a marginal sensitivity analysis parameter that does not depend on the number or complexity of the measured covariates. We provide a guide to estimation and interpretation, and illustrate our method in simulations, as well as using a real data example from a randomized controlled trial studying the effect of umbilical vein oxytocin administration on the need for manual removal of the placenta during birth.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.