{"title":"Estimation of Task-Related Dynamic Brain Connectivity via Data Inflation and Classification Model Explainability.","authors":"Peter Rogelj","doi":"10.1007/s12021-025-09733-6","DOIUrl":null,"url":null,"abstract":"<p><p>Study of brain function often involves analyzing task-related switching between intrinsic brain networks, which connect various brain regions. Functional brain connectivity analysis methods aim to estimate these networks but are limited by the statistical constraints of windowing functions, which reduce temporal resolution and hinder explainability of highly dynamic processes. In this work, we propose a novel approach to functional connectivity analysis through the explainability of EEG classification. Unlike conventional methods that condense raw data into extracted features, our approach inflates raw EEG data by decomposition into meaningful components that explain processes in the application domain. To uncover the brain connectivity that affects classification decisions, we introduce a new method of dynamic influence data inflation (DIDI), which extracts signals representing interactions between electrode regions. These inflated data are then classified using an end-to-end neural network classifier architecture designed for raw EEG signals. Saliency map estimation from trained classifiers reveals the connectivity dynamics affecting classification decisions, which can be visualized as dynamic connectivity support maps for improved interpretability. The methodology is demonstrated on two publicly available datasets: one for imagined motor movement classification and the other for emotion classification. The results highlight the dual benefits of our approach: in addition to providing interpretable insights into connectivity dynamics it increases classification accuracy.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"33"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-025-09733-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Study of brain function often involves analyzing task-related switching between intrinsic brain networks, which connect various brain regions. Functional brain connectivity analysis methods aim to estimate these networks but are limited by the statistical constraints of windowing functions, which reduce temporal resolution and hinder explainability of highly dynamic processes. In this work, we propose a novel approach to functional connectivity analysis through the explainability of EEG classification. Unlike conventional methods that condense raw data into extracted features, our approach inflates raw EEG data by decomposition into meaningful components that explain processes in the application domain. To uncover the brain connectivity that affects classification decisions, we introduce a new method of dynamic influence data inflation (DIDI), which extracts signals representing interactions between electrode regions. These inflated data are then classified using an end-to-end neural network classifier architecture designed for raw EEG signals. Saliency map estimation from trained classifiers reveals the connectivity dynamics affecting classification decisions, which can be visualized as dynamic connectivity support maps for improved interpretability. The methodology is demonstrated on two publicly available datasets: one for imagined motor movement classification and the other for emotion classification. The results highlight the dual benefits of our approach: in addition to providing interpretable insights into connectivity dynamics it increases classification accuracy.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.