Estimation of chlorophyll content in Dendrocalamus giganteus based on GEDI data optimized by EBKRP method.

Q3 Environmental Science
Cui-Fen Xia, Wen-Wu Zhou, Qing-Tai Shu, Ming-Xing Wang, Zai-Kun Wu, Lian-Jin Fu, Cheng-Fang Ren
{"title":"Estimation of chlorophyll content in <i>Dendrocalamus giganteus</i> based on GEDI data optimized by EBKRP method.","authors":"Cui-Fen Xia, Wen-Wu Zhou, Qing-Tai Shu, Ming-Xing Wang, Zai-Kun Wu, Lian-Jin Fu, Cheng-Fang Ren","doi":"10.13287/j.1001-9332.202505.003","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorophyll content is a crucial parameter for evaluating forest health and vegetation growth. It is an urgent to accurately estimate chlorophyll content at the regional scale with low cost by using remote sensing techno-logy. In this study, we took Xinping County, Yuxi City, Yunnan Province, as the research area, and used GEDI data as the main information source. Based on the empirical Bayesian Kriging regression prediction (EBKRP) method, we accurately obtained the continuous distribution of the spot characteristic parameters in the unknown space of the study area. Combined with measured data of 52 plots, we used Pearson correlation, random forest (RF) and gradient boosting regression tree (GBRT) to screen the optimal combination parameters. We further established the best estimation model of chlorophyll content of <i>Dendrocalamus giganteus</i> at regional scale by Random forest regression (RFR) and GBRT models. The results showed that EBKRP demonstrated high prediction accuracy and reliability, with <i>R</i><sup>2</sup> values ranging from 0.34 to 0.99, RMSE from 0.012 to 3134.005, rRMSE from 0.011 to 0.854, and CRPS from 965.492 to 1626.887. Different parameter optimization methods yielded slightly different optimal para-meter combinations. Different remote sensing modeling methods showed varying accuracy levels. The GBRT model (<i>R</i><sup>2</sup>=0.94, RMSE=0.132, <i>P</i>=91.2%) outperformed the RFR model (<i>R</i><sup>2</sup>=0.89, RMSE=0.192, <i>P</i>=89.3%). Using the GBRT model for estimating and mapping the spatial distribution of <i>D. giganteus</i> chlorophyll content, which ranged from 0.22 to 2.32 g·m<sup>-2</sup>, with an average of 1.36 g·m<sup>-2</sup>. These results aligned with the actual <i>D. giganteus</i> distribution in the study area, indicating that the GBRT model using GEDI data optimized by EBKRP could be feasible and reliable for estimating forest biochemical parameters, thereby providing effective support for forest health monitoring.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"36 5","pages":"1319-1329"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202505.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorophyll content is a crucial parameter for evaluating forest health and vegetation growth. It is an urgent to accurately estimate chlorophyll content at the regional scale with low cost by using remote sensing techno-logy. In this study, we took Xinping County, Yuxi City, Yunnan Province, as the research area, and used GEDI data as the main information source. Based on the empirical Bayesian Kriging regression prediction (EBKRP) method, we accurately obtained the continuous distribution of the spot characteristic parameters in the unknown space of the study area. Combined with measured data of 52 plots, we used Pearson correlation, random forest (RF) and gradient boosting regression tree (GBRT) to screen the optimal combination parameters. We further established the best estimation model of chlorophyll content of Dendrocalamus giganteus at regional scale by Random forest regression (RFR) and GBRT models. The results showed that EBKRP demonstrated high prediction accuracy and reliability, with R2 values ranging from 0.34 to 0.99, RMSE from 0.012 to 3134.005, rRMSE from 0.011 to 0.854, and CRPS from 965.492 to 1626.887. Different parameter optimization methods yielded slightly different optimal para-meter combinations. Different remote sensing modeling methods showed varying accuracy levels. The GBRT model (R2=0.94, RMSE=0.132, P=91.2%) outperformed the RFR model (R2=0.89, RMSE=0.192, P=89.3%). Using the GBRT model for estimating and mapping the spatial distribution of D. giganteus chlorophyll content, which ranged from 0.22 to 2.32 g·m-2, with an average of 1.36 g·m-2. These results aligned with the actual D. giganteus distribution in the study area, indicating that the GBRT model using GEDI data optimized by EBKRP could be feasible and reliable for estimating forest biochemical parameters, thereby providing effective support for forest health monitoring.

基于EBKRP优化的GEDI数据估算巨菖蒲叶绿素含量
叶绿素含量是评价森林健康和植被生长的重要参数。利用遥感技术在区域尺度上以低成本准确估算叶绿素含量是一个迫切需要解决的问题。本研究以云南省玉溪市新平县为研究区,采用GEDI数据作为主要信息源。基于经验贝叶斯Kriging回归预测(EBKRP)方法,准确地获得了研究区未知空间中点特征参数的连续分布。结合52个地块的实测数据,采用Pearson相关、随机森林(random forest, RF)和梯度增强回归树(gradient boosting regression tree, GBRT)筛选最优组合参数。利用随机森林回归(RFR)和GBRT模型建立了区域尺度下巨菖蒲叶绿素含量的最佳估算模型。结果表明,EBKRP具有较高的预测精度和信度,R2为0.34 ~ 0.99,RMSE为0.012 ~ 3134.005,rRMSE为0.011 ~ 0.854,CRPS为965.492 ~ 1626.887。不同的参数优化方法得到的最优参数组合略有不同。不同的遥感建模方法具有不同的精度水平。GBRT模型(R2=0.94, RMSE=0.132, P=91.2%)优于RFR模型(R2=0.89, RMSE=0.192, P=89.3%)。利用GBRT模型估算和作图巨藻叶绿素含量的空间分布范围为0.22 ~ 2.32 g·m-2,平均为1.36 g·m-2。这些结果与研究区巨鹭的实际分布相吻合,说明利用EBKRP优化的GEDI数据构建的GBRT模型估算森林生化参数是可行、可靠的,可为森林健康监测提供有效支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
应用生态学报
应用生态学报 Environmental Science-Ecology
CiteScore
2.50
自引率
0.00%
发文量
11393
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信