Carolina Rossi de Oliveira, Aline Vitória Corim Marim, Camila Santos Woloche, Paulo Cezar De Lucca, Marcelo Falsarella Carazzolle, Gonçalo Amarante Guimarães Pereira
{"title":"First report of transgenic Agave sisalana 'RLV 19' plants resistant to the herbicide glyphosate-an improved alternative for biofuel production.","authors":"Carolina Rossi de Oliveira, Aline Vitória Corim Marim, Camila Santos Woloche, Paulo Cezar De Lucca, Marcelo Falsarella Carazzolle, Gonçalo Amarante Guimarães Pereira","doi":"10.1007/s11248-025-00445-w","DOIUrl":null,"url":null,"abstract":"<p><p>The Agave genus is recognized for its diversity, economic importance, and adaptability to arid and semi-desert climates. Among its species, Agave sisalana stands out for the production of sisal, a resilient natural fiber with various industrial applications and potential to be used as a raw material in biofuel production, due to the accumulation of fermentable sugars in its biomass. Although this species presents significant agronomic potential, challenges in conventional breeding hinder its cultivation. A viable alternative for genetic improvement is the development of transgenic plants that incorporate desirable agronomic traits through the controlled insertion of genes of interest into their genome. The objective of study was to develop a protocol for obtaining transgenic plants of Agave sisalana 'RLV19,' a species widely cultivated in the semi-arid region of Bahia-BA, Brazil, using the cp4-epsps gene aimed at constitutive gene expression. Two transgenic plants of Agave sisalana 'RLV19' were regenerated via organogenesis. PCR analyses and CP4-EPSP protein expression by RT-PCR confirmed the presence and expression of the transgene in these plants. This is the first report of A. sisalana transgenic plants expressing the cp4-epsps gene, and to the best of our knowledge, there have been no prior reports on protocols for the production of transgenic plants of this species.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"34 1","pages":"27"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-025-00445-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The Agave genus is recognized for its diversity, economic importance, and adaptability to arid and semi-desert climates. Among its species, Agave sisalana stands out for the production of sisal, a resilient natural fiber with various industrial applications and potential to be used as a raw material in biofuel production, due to the accumulation of fermentable sugars in its biomass. Although this species presents significant agronomic potential, challenges in conventional breeding hinder its cultivation. A viable alternative for genetic improvement is the development of transgenic plants that incorporate desirable agronomic traits through the controlled insertion of genes of interest into their genome. The objective of study was to develop a protocol for obtaining transgenic plants of Agave sisalana 'RLV19,' a species widely cultivated in the semi-arid region of Bahia-BA, Brazil, using the cp4-epsps gene aimed at constitutive gene expression. Two transgenic plants of Agave sisalana 'RLV19' were regenerated via organogenesis. PCR analyses and CP4-EPSP protein expression by RT-PCR confirmed the presence and expression of the transgene in these plants. This is the first report of A. sisalana transgenic plants expressing the cp4-epsps gene, and to the best of our knowledge, there have been no prior reports on protocols for the production of transgenic plants of this species.
期刊介绍:
Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities.
Transgenic Research publishes
-Original Papers
-Reviews:
Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged.
-Brief Communications:
Should report significant developments in methodology and experimental transgenic higher organisms