Artificial Intelligence for the Detection of Diabetic Retinopathy.

IF 0.8 4区 医学 Q4 OPHTHALMOLOGY
Ansgar Beuse, Carsten Grohmann, Hauke M Schadwinkel, Christos Skevas, Martin S Spitzer
{"title":"Artificial Intelligence for the Detection of Diabetic Retinopathy.","authors":"Ansgar Beuse, Carsten Grohmann, Hauke M Schadwinkel, Christos Skevas, Martin S Spitzer","doi":"10.1055/a-2545-1192","DOIUrl":null,"url":null,"abstract":"<p><p>Screening and timely treatment can avoid the majority of severe vision loss and blindness from diabetic retinopathy. Artificial intelligence (AI) algorithms that detect DR from retinal photographs without human assessment might reduce the challenges of systematic screening. The German National Care Guideline recommends that individuals with diabetes receive annual or biennial eye examinations to detect treatable DR. Efficient and comprehensive screening of the growing diabetic population requires more and more resources. Artificial intelligence (AI) algorithms that detect DR from retinal photographs without human assessment might help in coping with the immense screening burden. Many of these AI algorithms have achieved good sensitivity and specificity for detecting treatable DR, as compared to human graders; however, many important challenges remain, such as acceptance, cost-effectiveness, liability issues, IT security, and reimbursement. AI-supported DR screening has so far only been used to a limited extent, even in countries with a developed digital infrastructure. These questions must be addressed before AI-based DR screening can be implemented on a large scale into clinical practice. This overview presents key concepts in development and currently approved AI applications for DR screening.</p>","PeriodicalId":17904,"journal":{"name":"Klinische Monatsblatter fur Augenheilkunde","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Klinische Monatsblatter fur Augenheilkunde","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2545-1192","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Screening and timely treatment can avoid the majority of severe vision loss and blindness from diabetic retinopathy. Artificial intelligence (AI) algorithms that detect DR from retinal photographs without human assessment might reduce the challenges of systematic screening. The German National Care Guideline recommends that individuals with diabetes receive annual or biennial eye examinations to detect treatable DR. Efficient and comprehensive screening of the growing diabetic population requires more and more resources. Artificial intelligence (AI) algorithms that detect DR from retinal photographs without human assessment might help in coping with the immense screening burden. Many of these AI algorithms have achieved good sensitivity and specificity for detecting treatable DR, as compared to human graders; however, many important challenges remain, such as acceptance, cost-effectiveness, liability issues, IT security, and reimbursement. AI-supported DR screening has so far only been used to a limited extent, even in countries with a developed digital infrastructure. These questions must be addressed before AI-based DR screening can be implemented on a large scale into clinical practice. This overview presents key concepts in development and currently approved AI applications for DR screening.

糖尿病视网膜病变的人工智能检测。
筛查和及时治疗可以避免大多数由糖尿病视网膜病变引起的严重视力丧失和失明。人工智能(AI)算法无需人工评估即可从视网膜照片中检测DR,这可能会减少系统筛查的挑战。德国国家保健指南建议糖尿病患者每年或每两年进行一次眼科检查,以发现可治疗的dr。对不断增长的糖尿病人群进行有效和全面的筛查需要越来越多的资源。无需人工评估就能从视网膜照片中检测DR的人工智能(AI)算法可能有助于应对巨大的筛查负担。与人类评分相比,许多人工智能算法在检测可治疗的DR方面具有良好的灵敏度和特异性;然而,许多重要的挑战仍然存在,例如接受、成本效益、责任问题、IT安全性和报销。迄今为止,即使在数字基础设施发达的国家,人工智能支持的DR筛查也只在有限程度上得到了应用。在基于人工智能的DR筛查能够大规模应用于临床实践之前,必须解决这些问题。本综述介绍了发展中的关键概念和目前批准的用于DR筛选的人工智能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
235
审稿时长
4-8 weeks
期刊介绍: -Konzentriertes Fachwissen aus Klinik und Praxis: Die entscheidenden Ergebnisse der internationalen Forschung - für Sie auf den Punkt gebracht und kritisch kommentiert, Übersichtsarbeiten zu den maßgeblichen Themen der täglichen Praxis, Top informiert - breite klinische Berichterstattung. -CME-Punkte sammeln mit dem Refresher: Effiziente, CME-zertifizierte Fortbildung, mit dem Refresher, 3 CME-Punkte pro Ausgabe - bis zu 36 CME-Punkte im Jahr!. -Aktuelle Rubriken mit echtem Nutzwert: Kurzreferate zu den wichtigsten Artikeln internationaler Zeitschriften, Schwerpunktthema in jedem Heft: Ausführliche Übersichtsarbeiten zu den wichtigsten Themen der Ophthalmologie – so behalten Sie das gesamte Fach im Blick!, Originalien mit den neuesten Entwicklungen, Übersichten zu den relevanten Themen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信