An integrated multi-mode detection platform based on CRISPR/Cas 12a and aptamers for ultra-sensitive identification of sulfamethazine and genes associated with sulfonamide resistance.
IF 10.6 1区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tao Zhang, Zongwu Meng, Haoyu Yu, Zerun Zhang, Guiling Liu, Anqi Qiu, Wanshu Zheng, Ping Ding, Tianhan Kai
{"title":"An integrated multi-mode detection platform based on CRISPR/Cas 12a and aptamers for ultra-sensitive identification of sulfamethazine and genes associated with sulfonamide resistance.","authors":"Tao Zhang, Zongwu Meng, Haoyu Yu, Zerun Zhang, Guiling Liu, Anqi Qiu, Wanshu Zheng, Ping Ding, Tianhan Kai","doi":"10.1186/s12951-025-03463-2","DOIUrl":null,"url":null,"abstract":"<p><p>The production and buildup of sulfamethazine (SMZ) and resistance genes for sulfonamide antibiotics (sul1) pose a serious risk to environmental and public health safety. Creating advanced sensing systems that are both highly sensitive and selective for the prolonged observation of SMZ concentrations in the environment, along with the quantification of sul1 gene prevalence, aims to identify trends in resistance, posing a considerable challenge. Here, we devised a platform (SMZ-sul1 multi-mode detection platform) that allows for the fluorescence detection of SMZ in environmental samples. This is achieved through the competition for the aptamer between the complementary base and SMZ, along with the colorimetric, photothermal, and electrochemical tracking of sul1, using a magnetic separation unit (FP@cDNA). MOF-818@PtPd (MPP) nanozymes with high peroxide mimetic enzyme activity were linked to FP@cDNA through Zr-O-P bond and employed as a catalyst for the 3,3',5,5'-tetramethylbenzidine (TMB) oxidation, as well as for electrocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) reduction. The ability of Cas12a to perform trans cleavage was activated by its precise identification of the sul1, leading to the non-selective cutting of single-stranded DNA (ssDNA). Thereafter, the MPP nanoparticles were released into the supernatant, where they catalyzed the oxidation of TMB. Alternatively, the functioning CRISPR/Cas12a system specifically targeted and cleaved ssDNA present on the electrode, resulting in altered loading of MPP nanozymes and a decrease in the current associated with the catalytic reduction of H<sub>2</sub>O<sub>2</sub>. The remarkable magnetic separation capabilities of FP@cDNA, combined with the superior target recognition features of CRISPR/Cas12a and aptamer, facilitated the creation of a highly sensitive detection system, achieving detection limits of 0.67 pM for SMZ and 7.6 fM for sul1, and exhibit great potential for monitoring and prediction in the field of public health.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"408"},"PeriodicalIF":10.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12131764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03463-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The production and buildup of sulfamethazine (SMZ) and resistance genes for sulfonamide antibiotics (sul1) pose a serious risk to environmental and public health safety. Creating advanced sensing systems that are both highly sensitive and selective for the prolonged observation of SMZ concentrations in the environment, along with the quantification of sul1 gene prevalence, aims to identify trends in resistance, posing a considerable challenge. Here, we devised a platform (SMZ-sul1 multi-mode detection platform) that allows for the fluorescence detection of SMZ in environmental samples. This is achieved through the competition for the aptamer between the complementary base and SMZ, along with the colorimetric, photothermal, and electrochemical tracking of sul1, using a magnetic separation unit (FP@cDNA). MOF-818@PtPd (MPP) nanozymes with high peroxide mimetic enzyme activity were linked to FP@cDNA through Zr-O-P bond and employed as a catalyst for the 3,3',5,5'-tetramethylbenzidine (TMB) oxidation, as well as for electrocatalytic hydrogen peroxide (H2O2) reduction. The ability of Cas12a to perform trans cleavage was activated by its precise identification of the sul1, leading to the non-selective cutting of single-stranded DNA (ssDNA). Thereafter, the MPP nanoparticles were released into the supernatant, where they catalyzed the oxidation of TMB. Alternatively, the functioning CRISPR/Cas12a system specifically targeted and cleaved ssDNA present on the electrode, resulting in altered loading of MPP nanozymes and a decrease in the current associated with the catalytic reduction of H2O2. The remarkable magnetic separation capabilities of FP@cDNA, combined with the superior target recognition features of CRISPR/Cas12a and aptamer, facilitated the creation of a highly sensitive detection system, achieving detection limits of 0.67 pM for SMZ and 7.6 fM for sul1, and exhibit great potential for monitoring and prediction in the field of public health.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.