High Figure-of-Merit 36Y-Cut LiNbO3 Lamb Wave Resonators With Dissipation Loss Optimization

IF 3.7 2区 工程技术 Q1 ACOUSTICS
Yushuai Liu;Xuankai Xu;Jiawei Li;Tao Wu
{"title":"High Figure-of-Merit 36Y-Cut LiNbO3 Lamb Wave Resonators With Dissipation Loss Optimization","authors":"Yushuai Liu;Xuankai Xu;Jiawei Li;Tao Wu","doi":"10.1109/TUFFC.2025.3575500","DOIUrl":null,"url":null,"abstract":"In this work, we present the development of high figure-of-merit (FOM) symmetric Lamb wave (S0) mode resonators using 36Y-cut single-crystal lithium niobate (LiNbO3) thin films. This study enhances the quality factor (<inline-formula> <tex-math>${Q}_{s}$ </tex-math></inline-formula>) through optimization of anchor dimensions and in-plane rotated angle (<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>). A periodic relationship between <inline-formula> <tex-math>${Q}_{s}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula> was observed, which is attributed to the anisotropic viscosity coefficient (<inline-formula> <tex-math>$ \\eta $ </tex-math></inline-formula>) of the S0 mode in 36Y-cut LiNbO3. A method of acoustic delay lines (ADLs) for evaluating <inline-formula> <tex-math>$ \\eta $ </tex-math></inline-formula> related to the anisotropic intrinsic loss mechanism is proposed on this platform. In this method, the experimental results indicate an inverse correlation between <inline-formula> <tex-math>$ \\eta $ </tex-math></inline-formula> and <inline-formula> <tex-math>$ {Q}_{s} $ </tex-math></inline-formula>. Notably, our findings explicitly demonstrate that the condition for minimal acoustic loss does not universally correspond to <inline-formula> <tex-math>$\\text {PFA}=0$ </tex-math></inline-formula>, emphasizing the necessity of a quantitative <inline-formula> <tex-math>$\\eta $ </tex-math></inline-formula> analysis. Our optimized resonator exhibits an electromechanical coupling coefficient (<inline-formula> <tex-math>${k}_{t}^{2}$ </tex-math></inline-formula>) of 12.3% and a significant <inline-formula> <tex-math>${Q}_{s}$ </tex-math></inline-formula> of 2273 at 323.6 MHz, resulting in an FOM of approximately 280. The reported platform can potentially deliver high-performance radio frequency (RF) applications.Index Terms— Acoustic propagating angle, high figure-of-merit (FOM), lamb wave resonators, lithium niobate.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 8","pages":"1021-1028"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11021008/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present the development of high figure-of-merit (FOM) symmetric Lamb wave (S0) mode resonators using 36Y-cut single-crystal lithium niobate (LiNbO3) thin films. This study enhances the quality factor ( ${Q}_{s}$ ) through optimization of anchor dimensions and in-plane rotated angle ( $\alpha $ ). A periodic relationship between ${Q}_{s}$ and $\alpha $ was observed, which is attributed to the anisotropic viscosity coefficient ( $ \eta $ ) of the S0 mode in 36Y-cut LiNbO3. A method of acoustic delay lines (ADLs) for evaluating $ \eta $ related to the anisotropic intrinsic loss mechanism is proposed on this platform. In this method, the experimental results indicate an inverse correlation between $ \eta $ and $ {Q}_{s} $ . Notably, our findings explicitly demonstrate that the condition for minimal acoustic loss does not universally correspond to $\text {PFA}=0$ , emphasizing the necessity of a quantitative $\eta $ analysis. Our optimized resonator exhibits an electromechanical coupling coefficient ( ${k}_{t}^{2}$ ) of 12.3% and a significant ${Q}_{s}$ of 2273 at 323.6 MHz, resulting in an FOM of approximately 280. The reported platform can potentially deliver high-performance radio frequency (RF) applications.Index Terms— Acoustic propagating angle, high figure-of-merit (FOM), lamb wave resonators, lithium niobate.
具有耗散损耗优化的高品质36y切割LiNbO3 Lamb波谐振器
在这项工作中,我们提出了使用36y切割单晶铌酸锂(LiNbO3)薄膜开发高品质数(FOM)对称兰姆波(S0)模式谐振器。本研究通过优化锚点尺寸和平面内旋转角(α)来提高质量因子(Qs)。在36Y-cut LiNbO3中,Qs和α之间存在周期性的关系,这主要归因于S0模式的各向异性粘度系数(η)。在该平台上提出了一种用声延迟线(ADLs)计算各向异性本征损耗机制相关η值的方法。实验结果表明,η值与Qs值呈负相关关系。值得注意的是,我们的研究结果明确表明,最小声损失的条件并不普遍对应于PFA = 0,强调了定量η分析的必要性。我们优化的谐振器在323.6 MHz时的机电耦合系数(k2t)为12.3%,显著Qs为2273,导致FOM约为280。报告的平台可以潜在地提供高性能射频(RF)应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信