Shan Han, Yanqiu Xie, Jiale Lv, Xuedong Sun, Yuhua Shi
{"title":"CNOT6L regulates energy metabolism in the ovarian granulosa cells associated with polycystic ovary syndrome.","authors":"Shan Han, Yanqiu Xie, Jiale Lv, Xuedong Sun, Yuhua Shi","doi":"10.3389/fcell.2025.1607161","DOIUrl":null,"url":null,"abstract":"<p><p>The endocrine functions exerted by ovarian granulosa cells (GCs) are crucial factors in maintaining follicle development, as oocyte development relies on providing energy substrates and cytokines by ovarian granulosa cells. The mRNA deadenylase level of granulosa cells precisely regulates the follicular development processes. In this study, we detect the expression level of the deadenylase CNOT6L in polycystic ovarian syndrome (PCOS) patients' granulosa cells and mouse models' ovaries. The results found that the CNOT6L significantly upregulated in the ovarian granulosa cells of both PCOS patients and mouse models. Subsequently, we conducted the <i>Cnot6l-</i>overexpressed granulosa cells to explore the alterations by which CNOT6L regulates ovarian granulosa cell function. The overexpression of CNOT6L in granulosa cells significantly inhibited the glycolytic pathway, activated the mitochondrial oxidative phosphorylation pathway, led to a reduction in the generation of the intermediate product lactate, and resulted in impaired energy supply to the oocyte. Subsequently, we performed Full-length transcriptome sequencing on the granulosa cells and investigated the impact of mRNA poly(A) level differences on granulosa cell dysfunction in PCOS. This study offers new insights into the role of CNOT6L in regulating energy metabolism homeostasis and its involvement in follicular developmental disorders related to polycystic ovary syndrome.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1607161"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1607161","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The endocrine functions exerted by ovarian granulosa cells (GCs) are crucial factors in maintaining follicle development, as oocyte development relies on providing energy substrates and cytokines by ovarian granulosa cells. The mRNA deadenylase level of granulosa cells precisely regulates the follicular development processes. In this study, we detect the expression level of the deadenylase CNOT6L in polycystic ovarian syndrome (PCOS) patients' granulosa cells and mouse models' ovaries. The results found that the CNOT6L significantly upregulated in the ovarian granulosa cells of both PCOS patients and mouse models. Subsequently, we conducted the Cnot6l-overexpressed granulosa cells to explore the alterations by which CNOT6L regulates ovarian granulosa cell function. The overexpression of CNOT6L in granulosa cells significantly inhibited the glycolytic pathway, activated the mitochondrial oxidative phosphorylation pathway, led to a reduction in the generation of the intermediate product lactate, and resulted in impaired energy supply to the oocyte. Subsequently, we performed Full-length transcriptome sequencing on the granulosa cells and investigated the impact of mRNA poly(A) level differences on granulosa cell dysfunction in PCOS. This study offers new insights into the role of CNOT6L in regulating energy metabolism homeostasis and its involvement in follicular developmental disorders related to polycystic ovary syndrome.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.