Masayuki Yamashita, Jingjing Li, Vu L Tran, Myriam L R Haltalli, Shannon McKinney-Freeman, Toshio Suda
{"title":"Balancing Hematopoietic Stem Cell Self-renewal and Differentiation Activities Throughout Ontogeny and Aging.","authors":"Masayuki Yamashita, Jingjing Li, Vu L Tran, Myriam L R Haltalli, Shannon McKinney-Freeman, Toshio Suda","doi":"10.1016/j.exphem.2025.104820","DOIUrl":null,"url":null,"abstract":"<p><p>During fetal development, lifelong hematopoietic stem cells (HSCs) emerge from hemogenic endothelium as a part of the intra-arterial hematopoietic clusters. These definitive HSCs are deemed to colonize and expand in the fetal liver, migrate to the bone marrow, and produce mature blood cells throughout life. However, emerging lines of evidence have challenged this paradigm, and alternative models have been proposed. Moreover, recent studies have revealed expansion of HSCs during aging, which seems counterintuitive to their age-dependent reduction in regenerative capacity. Here, we summarize emerging views on hematopoietic ontogeny and aging, which was the focus of the Summer 2024 International Society for Experimental Hematology (ISEH) webinar. Teaser Abstract: During fetal development, lifelong hematopoietic stem cells (HSCs) emerge from hemogenic endothelium as a part of the intra-arterial hematopoietic clusters. These definitive HSCs are deemed to colonize and expand in the fetal liver, migrate to the bone marrow, and produce mature blood cells throughout life. However, emerging lines of evidence have challenged this paradigm, and alternative models have been proposed. Moreover, recent studies have revealed expansion of HSCs during aging, which seems counterintuitive to their age-dependent reduction in regenerative capacity. Here, we summarize emerging views on hematopoietic ontogeny and aging.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104820"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exphem.2025.104820","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During fetal development, lifelong hematopoietic stem cells (HSCs) emerge from hemogenic endothelium as a part of the intra-arterial hematopoietic clusters. These definitive HSCs are deemed to colonize and expand in the fetal liver, migrate to the bone marrow, and produce mature blood cells throughout life. However, emerging lines of evidence have challenged this paradigm, and alternative models have been proposed. Moreover, recent studies have revealed expansion of HSCs during aging, which seems counterintuitive to their age-dependent reduction in regenerative capacity. Here, we summarize emerging views on hematopoietic ontogeny and aging, which was the focus of the Summer 2024 International Society for Experimental Hematology (ISEH) webinar. Teaser Abstract: During fetal development, lifelong hematopoietic stem cells (HSCs) emerge from hemogenic endothelium as a part of the intra-arterial hematopoietic clusters. These definitive HSCs are deemed to colonize and expand in the fetal liver, migrate to the bone marrow, and produce mature blood cells throughout life. However, emerging lines of evidence have challenged this paradigm, and alternative models have been proposed. Moreover, recent studies have revealed expansion of HSCs during aging, which seems counterintuitive to their age-dependent reduction in regenerative capacity. Here, we summarize emerging views on hematopoietic ontogeny and aging.
期刊介绍:
Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.