Willem Grootjans, Uliana Krainska, Mohammad H Rezazade Mehrizi
{"title":"How do medical institutions co-create artificial intelligence solutions with commercial startups?","authors":"Willem Grootjans, Uliana Krainska, Mohammad H Rezazade Mehrizi","doi":"10.1007/s00330-025-11672-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>As many radiology departments embark on adopting artificial intelligence (AI) solutions in their clinical practice, they face the challenge that commercial applications often do not fit with their needs. As a result, they engage in a co-creation process with technology companies to collaboratively develop and implement AI solutions. Despite its importance, the process of co-creating AI solutions is under-researched, particularly regarding the range of challenges that may occur and how medical and technological parties can monitor, assess, and guide their co-creation process through an effective collaboration framework.</p><p><strong>Materials and methods: </strong>Drawing on the multi-case study of three co-creation projects at an academic medical center in the Netherlands, we examine how co-creation processes happen through different scenarios, depending on the extent to which the two parties engage in \"resourcing,\" \"adaptation,\" and \"reconfiguration.\"</p><p><strong>Results: </strong>We offer a relational framework that helps involved parties monitor, assess, and guide their collaborations in co-creating AI solutions. The framework allows them to discover novel use-cases and reconsider their established assumptions and practices for developing AI solutions, also for redesigning their technological systems, clinical workflow, and their legal and organizational arrangements. Using the proposed framework, we identified distinct co-creation journeys with varying outcomes, which could be mapped onto the framework to diagnose, monitor, and guide collaborations toward desired results.</p><p><strong>Conclusion: </strong>The outcomes of co-creation can vary widely. The proposed framework enables medical institutions and technology companies to assess challenges and make adjustments. It can assist in steering their collaboration toward desired goals.</p><p><strong>Key points: </strong>Question How can medical institutions and AI startups effectively co-create AI solutions for radiology, ensuring alignment with clinical needs while steering collaboration effectively? Findings This study provides a co-creation framework allowing assessment of project progress, stakeholder engagement, as well as guidelines for radiology departments to steer co-creation of AI. Clinical relevance By actively involving radiology professionals in AI co-creation, this study demonstrates how co-creation helps bridge the gap between clinical needs and AI development, leading to clinically relevant, user-friendly solutions that enhance the radiology workflow.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11672-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: As many radiology departments embark on adopting artificial intelligence (AI) solutions in their clinical practice, they face the challenge that commercial applications often do not fit with their needs. As a result, they engage in a co-creation process with technology companies to collaboratively develop and implement AI solutions. Despite its importance, the process of co-creating AI solutions is under-researched, particularly regarding the range of challenges that may occur and how medical and technological parties can monitor, assess, and guide their co-creation process through an effective collaboration framework.
Materials and methods: Drawing on the multi-case study of three co-creation projects at an academic medical center in the Netherlands, we examine how co-creation processes happen through different scenarios, depending on the extent to which the two parties engage in "resourcing," "adaptation," and "reconfiguration."
Results: We offer a relational framework that helps involved parties monitor, assess, and guide their collaborations in co-creating AI solutions. The framework allows them to discover novel use-cases and reconsider their established assumptions and practices for developing AI solutions, also for redesigning their technological systems, clinical workflow, and their legal and organizational arrangements. Using the proposed framework, we identified distinct co-creation journeys with varying outcomes, which could be mapped onto the framework to diagnose, monitor, and guide collaborations toward desired results.
Conclusion: The outcomes of co-creation can vary widely. The proposed framework enables medical institutions and technology companies to assess challenges and make adjustments. It can assist in steering their collaboration toward desired goals.
Key points: Question How can medical institutions and AI startups effectively co-create AI solutions for radiology, ensuring alignment with clinical needs while steering collaboration effectively? Findings This study provides a co-creation framework allowing assessment of project progress, stakeholder engagement, as well as guidelines for radiology departments to steer co-creation of AI. Clinical relevance By actively involving radiology professionals in AI co-creation, this study demonstrates how co-creation helps bridge the gap between clinical needs and AI development, leading to clinically relevant, user-friendly solutions that enhance the radiology workflow.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.