{"title":"Finding Reproduction Numbers for Epidemic Models and Predator-Prey Models of Arbitrary Finite Dimension Using the Generalized Linear Chain Trick.","authors":"Paul J Hurtado, Cameron Richards","doi":"10.1007/s11538-025-01467-5","DOIUrl":null,"url":null,"abstract":"<p><p>Reproduction numbers, like the basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> </math> , play an important role in the analysis and application of dynamic models, including contagion models and ecological population models. One difficulty in deriving these quantities is that they must be computed on a model-by-model basis, since it is typically impractical to obtain general reproduction number expressions applicable to a family of related models, especially if these are of different dimensions (i.e., differing numbers of state variables). For example, this is typically the case for SIR-type infectious disease models derived using the linear chain trick. Here we show how to find general reproduction number expressions for such model families (which vary in their number of state variables) using the next generation operator approach in conjunction with the generalized linear chain trick (GLCT). We further show how the GLCT enables modelers to draw insights from these results by leveraging theory and intuition from continuous time Markov chains (CTMCs) and their absorption time distributions (i.e., phase-type probability distributions). To do this, we first review the GLCT and other connections between mean-field ODE model assumptions, CTMCs, and phase-type distributions. We then apply this technique to find reproduction numbers for two sets of models: a family of generalized SEIRS models of arbitrary finite dimension, and a generalized family of finite dimensional predator-prey (Rosenzweig-MacArthur type) models. These results highlight the utility of the GLCT for the derivation and analysis of mean field ODE models, especially when used in conjunction with theory from CTMCs and their associated phase-type distributions.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 7","pages":"89"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01467-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reproduction numbers, like the basic reproduction number , play an important role in the analysis and application of dynamic models, including contagion models and ecological population models. One difficulty in deriving these quantities is that they must be computed on a model-by-model basis, since it is typically impractical to obtain general reproduction number expressions applicable to a family of related models, especially if these are of different dimensions (i.e., differing numbers of state variables). For example, this is typically the case for SIR-type infectious disease models derived using the linear chain trick. Here we show how to find general reproduction number expressions for such model families (which vary in their number of state variables) using the next generation operator approach in conjunction with the generalized linear chain trick (GLCT). We further show how the GLCT enables modelers to draw insights from these results by leveraging theory and intuition from continuous time Markov chains (CTMCs) and their absorption time distributions (i.e., phase-type probability distributions). To do this, we first review the GLCT and other connections between mean-field ODE model assumptions, CTMCs, and phase-type distributions. We then apply this technique to find reproduction numbers for two sets of models: a family of generalized SEIRS models of arbitrary finite dimension, and a generalized family of finite dimensional predator-prey (Rosenzweig-MacArthur type) models. These results highlight the utility of the GLCT for the derivation and analysis of mean field ODE models, especially when used in conjunction with theory from CTMCs and their associated phase-type distributions.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.