Chemical space visual navigation in the era of deep learning and Big Data

IF 7.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Sergey Sosnin
{"title":"Chemical space visual navigation in the era of deep learning and Big Data","authors":"Sergey Sosnin","doi":"10.1016/j.drudis.2025.104392","DOIUrl":null,"url":null,"abstract":"<div><div>The ‘Big Data’ era in medicinal chemistry presents new challenges for analysis. While modern computers can store and process millions of molecular structures, final decisions in medicinal chemistry remain in human hands. However, the ability of humans to analyze large chemical data sets is limited by cognitive constraints, creating a demand for methods and tools to visualize chemical space. In this review, I highlight recent advances in algorithms and tools for visual navigation in chemical space. I explore how these methods are evolving to address the ‘Big Data’ challenge and discuss unconventional applications, including the visual validation of quantitative structure–activity relationship (QSAR)/quantitative structure–property relationship (QSPR) models, interactive generative approaches, and even the use of chemical space maps as digital art.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"30 7","pages":"Article 104392"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644625001059","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The ‘Big Data’ era in medicinal chemistry presents new challenges for analysis. While modern computers can store and process millions of molecular structures, final decisions in medicinal chemistry remain in human hands. However, the ability of humans to analyze large chemical data sets is limited by cognitive constraints, creating a demand for methods and tools to visualize chemical space. In this review, I highlight recent advances in algorithms and tools for visual navigation in chemical space. I explore how these methods are evolving to address the ‘Big Data’ challenge and discuss unconventional applications, including the visual validation of quantitative structure–activity relationship (QSAR)/quantitative structure–property relationship (QSPR) models, interactive generative approaches, and even the use of chemical space maps as digital art.
深度学习和大数据时代的化学空间视觉导航。
药物化学的“大数据”时代为分析提出了新的挑战。虽然现代计算机可以存储和处理数以百万计的分子结构,但药物化学的最终决定权仍然掌握在人类手中。然而,人类分析大型化学数据集的能力受到认知约束的限制,因此对可视化化学空间的方法和工具产生了需求。在这篇综述中,我重点介绍了化学空间视觉导航算法和工具的最新进展。我探讨了这些方法如何发展以应对“大数据”挑战,并讨论了非常规的应用,包括定量结构-活动关系(QSAR)/定量结构-性质关系(QSPR)模型的视觉验证,交互式生成方法,甚至使用化学空间地图作为数字艺术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信