Fang Zhao , Zhao Yang , Jingjing Wang , Mark Bartlam , Yingying Wang
{"title":"Enantioselective effects of chiral antibiotics on antibiotic resistance gene dissemination and risk in activated sludge","authors":"Fang Zhao , Zhao Yang , Jingjing Wang , Mark Bartlam , Yingying Wang","doi":"10.1016/j.biortech.2025.132749","DOIUrl":null,"url":null,"abstract":"<div><div>Misuse of antibiotics drives the spread of antibiotic resistance genes (ARGs). Although reducing residual antibiotic concentrations can help curb ARG proliferation, the biodegradation and transformation of antibiotic stereoisomers may exacerbate resistance development. However, the impact of antibiotic enantiomers on ARG proliferation remains poorly understood. This study employed metagenomic analysis to investigate the enantiomer-specific selection and resistance risks of chiral antibiotic ofloxacin (OFL) and its (<em>S</em>)-enantiomer, levofloxacin (LEV), in activated sludge. Results showed that LEV primarily promoted the enrichment of ARGs related to aminoglycoside and mupirocin resistance by selecting for pathogenic bacteria carrying virulence factors under high toxicity stress. OFL-driven ARG proliferation involved more diverse mechanisms, including increased gene mobility, co-selection with heavy metals, broader host range, and elevated pathogenicity. The antibiotic resistome risk index (ARRI) further demonstrated a higher environmental risk under OFL treatment than LEV. These findings offer critical insights into the enantioselective resistance risks posed by chiral antibiotics.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"434 ","pages":"Article 132749"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425007151","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Misuse of antibiotics drives the spread of antibiotic resistance genes (ARGs). Although reducing residual antibiotic concentrations can help curb ARG proliferation, the biodegradation and transformation of antibiotic stereoisomers may exacerbate resistance development. However, the impact of antibiotic enantiomers on ARG proliferation remains poorly understood. This study employed metagenomic analysis to investigate the enantiomer-specific selection and resistance risks of chiral antibiotic ofloxacin (OFL) and its (S)-enantiomer, levofloxacin (LEV), in activated sludge. Results showed that LEV primarily promoted the enrichment of ARGs related to aminoglycoside and mupirocin resistance by selecting for pathogenic bacteria carrying virulence factors under high toxicity stress. OFL-driven ARG proliferation involved more diverse mechanisms, including increased gene mobility, co-selection with heavy metals, broader host range, and elevated pathogenicity. The antibiotic resistome risk index (ARRI) further demonstrated a higher environmental risk under OFL treatment than LEV. These findings offer critical insights into the enantioselective resistance risks posed by chiral antibiotics.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.