Strain-Dependent Photodetection with Layered InSe Photoconductors.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2025-06-18 Epub Date: 2025-06-03 DOI:10.1021/acs.nanolett.5c00396
Luke Philpott, Brett C Johnson, Marco Fronzi, Eliza Rokhsat, Wei Luo, James Hutchison, Ary Anggara Wibowo, Robert Delaney, James Bullock
{"title":"Strain-Dependent Photodetection with Layered InSe Photoconductors.","authors":"Luke Philpott, Brett C Johnson, Marco Fronzi, Eliza Rokhsat, Wei Luo, James Hutchison, Ary Anggara Wibowo, Robert Delaney, James Bullock","doi":"10.1021/acs.nanolett.5c00396","DOIUrl":null,"url":null,"abstract":"<p><p>Controlled bandgap modulation is of particular interest for next generation optoelectronic devices, allowing the development of 'active' or 'reconfigurable' detectors and emitters. In van der Waals layered semiconductors, which exhibit high strain tolerance, strain has become a notable tool for active bandgap tuning. In this work, we demonstrate a flexible bulk InSe gated photoconductor with strain-induced modulation of the bandgap energy, shifting to higher and lower energies under compression and tension, respectively. Photoluminescence measurements reveal shift rates of around 117.1 meV·%<sup>-1</sup> in tension and 107.6 meV·%<sup>-1</sup> in compression. Spectral responsivity measurements indicate smaller shift rates, likely due to nonuniform strain application. Notably, these flexible devices achieve impressive performance with specific detectivities up to 3.78 × 10<sup>12</sup> cm·Hz<sup>1/2</sup>·W<sup>-1</sup>, a rise time of 4.1 μs, and a responsivity of 1.25 × 10<sup>3</sup> A·W<sup>-1</sup>. The realization of high responsivity and fast response times underscores the potential of this device architecture for advanced optoelectronic applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"9526-9534"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00396","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlled bandgap modulation is of particular interest for next generation optoelectronic devices, allowing the development of 'active' or 'reconfigurable' detectors and emitters. In van der Waals layered semiconductors, which exhibit high strain tolerance, strain has become a notable tool for active bandgap tuning. In this work, we demonstrate a flexible bulk InSe gated photoconductor with strain-induced modulation of the bandgap energy, shifting to higher and lower energies under compression and tension, respectively. Photoluminescence measurements reveal shift rates of around 117.1 meV·%-1 in tension and 107.6 meV·%-1 in compression. Spectral responsivity measurements indicate smaller shift rates, likely due to nonuniform strain application. Notably, these flexible devices achieve impressive performance with specific detectivities up to 3.78 × 1012 cm·Hz1/2·W-1, a rise time of 4.1 μs, and a responsivity of 1.25 × 103 A·W-1. The realization of high responsivity and fast response times underscores the potential of this device architecture for advanced optoelectronic applications.

Abstract Image

层状InSe光导体的应变相关光探测。
控制带隙调制对下一代光电器件特别感兴趣,允许开发“有源”或“可重构”探测器和发射器。在具有高应变容限的范德华层状半导体中,应变已成为有源带隙调谐的重要工具。在这项工作中,我们展示了一种具有应变诱导带隙能量调制的柔性体铟硒门控光导体,在压缩和张力下分别向更高和更低的能量转移。光致发光测量显示,在张力下的位移率约为117.1 meV·%-1,在压缩下的位移率为107.6 meV·%-1。光谱响应率测量显示较小的位移速率,可能是由于非均匀应变应用。值得注意的是,这些柔性器件的比探测率高达3.78 × 1012 cm·Hz1/2·W-1,上升时间为4.1 μs,响应率为1.25 × 103 a·W-1,具有令人印象深刻的性能。高响应性和快速响应时间的实现强调了该器件架构在先进光电应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信