Interplay of Superconductivity, Ferromagnetism, and Half-Metallicity in Gated Single-Layer g-C3N4.

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Pietro Nicolò Brangi, Francesca Martini, Pierluigi Cudazzo, Matteo Calandra
{"title":"Interplay of Superconductivity, Ferromagnetism, and Half-Metallicity in Gated Single-Layer g-C<sub>3</sub>N<sub>4</sub>.","authors":"Pietro Nicolò Brangi, Francesca Martini, Pierluigi Cudazzo, Matteo Calandra","doi":"10.1021/acs.jpclett.5c01013","DOIUrl":null,"url":null,"abstract":"<p><p>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) hosts lone pairs arising from broken carbon-nitrogen bonds in its heptazine structure. These strongly localized and weakly hybridized states form ultraflat bands, potentially leading to correlated states when doped. Using first-principles calculations, we show that field-effect hole doping in single-layer g-C<sub>3</sub>N<sub>4</sub> depletes these lone pairs, unveiling a rich phase diagram with a complex interplay of superconducting, half-metallic, and insulating ferromagnetic phases, even at very low charging and in the absence of transition metal ions. Our work highlights gated two-dimensional systems hosting lone pairs as a novel platform for strongly correlated states.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"5739-5744"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169656/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c01013","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphitic carbon nitride (g-C3N4) hosts lone pairs arising from broken carbon-nitrogen bonds in its heptazine structure. These strongly localized and weakly hybridized states form ultraflat bands, potentially leading to correlated states when doped. Using first-principles calculations, we show that field-effect hole doping in single-layer g-C3N4 depletes these lone pairs, unveiling a rich phase diagram with a complex interplay of superconducting, half-metallic, and insulating ferromagnetic phases, even at very low charging and in the absence of transition metal ions. Our work highlights gated two-dimensional systems hosting lone pairs as a novel platform for strongly correlated states.

Abstract Image

门控单层g-C3N4的超导性、铁磁性和半金属性的相互作用。
石墨氮化碳(g-C3N4)在其庚烷结构中由碳氮键断裂产生孤对。这些强局域化和弱杂化态形成超平带,当掺杂时可能导致相关态。利用第一性原理计算,我们证明了单层g-C3N4中的场效应空穴掺杂耗尽了这些孤对,揭示了一个丰富的相图,具有超导、半金属和绝缘铁磁相的复杂相互作用,即使在非常低的充电和没有过渡金属离子的情况下也是如此。我们的工作突出了门控二维系统作为强相关状态的新平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信