Thermal behavior of römerite over a Mars surface relevant temperature range: single-crystal and powder X-ray crystallography and magnetic properties

IF 5.2 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Artem S. Borisov, Veronika R. Abdulina, Oleg I. Siidra, Victoria A. Ginga, Alexander A. Tsirlin, Astrid Holzheid, Annika Zapfe, Yurii Skourski, Annette Setzer
{"title":"Thermal behavior of römerite over a Mars surface relevant temperature range: single-crystal and powder X-ray crystallography and magnetic properties","authors":"Artem S. Borisov,&nbsp;Veronika R. Abdulina,&nbsp;Oleg I. Siidra,&nbsp;Victoria A. Ginga,&nbsp;Alexander A. Tsirlin,&nbsp;Astrid Holzheid,&nbsp;Annika Zapfe,&nbsp;Yurii Skourski,&nbsp;Annette Setzer","doi":"10.1107/S1600576725002572","DOIUrl":null,"url":null,"abstract":"<p>A number of hydrous iron sulfate minerals have been detected on the surface of Mars under extraterrestrial conditions. Nonetheless, certain inquiries regarding the properties and phase evolution of hydrous iron sulfate minerals remain unresolved and subject to debate at present. In our research, the behavior of römerite, Fe<sup>2+</sup>Fe<sup>3+</sup><sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>14</sub>, was examined by utilizing <i>in situ</i> single-crystal and powder X-ray diffraction while simultaneously acquiring data upon heating. Römerite is stable under low-vacuum conditions. It exhibits a significant negative thermal expansion in the α<sub>33</sub> direction throughout the entire temperature range from −173 to 77°C and on up to decomposition. There is a cooperative interaction between the rotation of the sulfate tetrahedra in the [Fe<sup>3+</sup>(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]<sup>−</sup> clusters and the features of the hydrogen-bond system that determines the thermal expansion of römerite. The structure of römerite shows that the sulfate tetrahedra are the most rigid complexes, followed by the Fe2<sup>3+</sup>O<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> octahedra, and the Fe1<sup>2+</sup>(H<sub>2</sub>O)<sub>6</sub> octahedra are the most flexible. High-temperature powder X-ray diffraction, thermogravimetry and differential scanning calorimetry were used to determine the phase transformations and the eventual decomposition of römerite at higher temperatures up to 740°C. The decomposition of römerite at 60°C is followed by an amorphization, a transformation into a mikasaite-like phase at ∼275°C and a further decomposition into a hematite-like phase above 550°C, associated with the high-temperature form of magnetite, Fe<sub>3</sub>O<sub>4</sub>, above 575°C. The magnetic behavior of römerite reveals weak interactions between the Fe<sup>2+</sup> and Fe<sup>3+</sup> centers, in line with the large spatial separation between these ions.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"58 3","pages":"822-831"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576725002572","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A number of hydrous iron sulfate minerals have been detected on the surface of Mars under extraterrestrial conditions. Nonetheless, certain inquiries regarding the properties and phase evolution of hydrous iron sulfate minerals remain unresolved and subject to debate at present. In our research, the behavior of römerite, Fe2+Fe3+2(SO4)4(H2O)14, was examined by utilizing in situ single-crystal and powder X-ray diffraction while simultaneously acquiring data upon heating. Römerite is stable under low-vacuum conditions. It exhibits a significant negative thermal expansion in the α33 direction throughout the entire temperature range from −173 to 77°C and on up to decomposition. There is a cooperative interaction between the rotation of the sulfate tetrahedra in the [Fe3+(SO4)2(H2O)4] clusters and the features of the hydrogen-bond system that determines the thermal expansion of römerite. The structure of römerite shows that the sulfate tetrahedra are the most rigid complexes, followed by the Fe23+O2(H2O)4 octahedra, and the Fe12+(H2O)6 octahedra are the most flexible. High-temperature powder X-ray diffraction, thermogravimetry and differential scanning calorimetry were used to determine the phase transformations and the eventual decomposition of römerite at higher temperatures up to 740°C. The decomposition of römerite at 60°C is followed by an amorphization, a transformation into a mikasaite-like phase at ∼275°C and a further decomposition into a hematite-like phase above 550°C, associated with the high-temperature form of magnetite, Fe3O4, above 575°C. The magnetic behavior of römerite reveals weak interactions between the Fe2+ and Fe3+ centers, in line with the large spatial separation between these ions.

römerite在火星表面相关温度范围内的热行为:单晶和粉末x射线晶体学和磁性能
在地外环境下,在火星表面发现了许多含水硫酸铁矿物。然而,关于含水硫酸铁矿物的性质和物相演化的某些问题目前仍未得到解决,并存在争议。在我们的研究中,利用原位单晶和粉末x射线衍射同时获取加热数据,对römerite, Fe2+Fe3+2(SO4)4(H2O)14的行为进行了研究。Römerite在低真空条件下是稳定的。在−173 ~ 77℃的整个温度范围内,直至分解为止,在α33方向上表现出显著的负热膨胀。[Fe3+(SO4)2(H2O)4]−簇中硫酸盐四面体的旋转与氢键系统的特征之间存在协同相互作用,决定了römerite的热膨胀。römerite的结构表明硫酸盐四面体是最刚性的配合物,其次是Fe23+O2(H2O)4八面体,Fe12+(H2O)6八面体是最柔性的配合物。高温粉末x射线衍射、热重法和差示扫描量热法测定了römerite在740℃高温下的相变和最终分解。römerite在60°C分解后发生非晶化,在~ 275°C时转变为类云母岩相,在550°C以上进一步分解为类赤铁矿相,与575°C以上的磁铁矿Fe3O4的高温形式相关。römerite的磁性行为揭示了Fe2+和Fe3+中心之间的弱相互作用,这与这些离子之间的大空间间隔一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Crystallography
Journal of Applied Crystallography CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.80
自引率
3.30%
发文量
178
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信