{"title":"Real-Time Traffic Conflict Prediction at Intersections: A Novel Approach Integrating Statistical Models and Machine Learning","authors":"Chuanyun Fu, Jiaming Liu, Huahua Liu, Xiaoli Wang, Zhaoyou Lu, Jushang Ou, Wei Bai","doi":"10.1155/atr/2239983","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Real-time traffic conflict prediction is crucial for developing proactive safety management strategies and improving overall traffic safety. However, existing studies have failed to fully consider the entire process of traffic conflict generation at both signalized and unsignalized intersections. Given this, this study proposes a real-time three-stage approach integrating statistical and machine learning models developed from three perspectives to reveal the influencing factors, occurrence identification, and quantity prediction of traffic conflicts. The results show that the proposed approach can effectively predict traffic conflicts at signalized and nonsignalized intersections. The findings of this study provide new ideas for proactive safety management in urban road networks.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/2239983","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/2239983","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time traffic conflict prediction is crucial for developing proactive safety management strategies and improving overall traffic safety. However, existing studies have failed to fully consider the entire process of traffic conflict generation at both signalized and unsignalized intersections. Given this, this study proposes a real-time three-stage approach integrating statistical and machine learning models developed from three perspectives to reveal the influencing factors, occurrence identification, and quantity prediction of traffic conflicts. The results show that the proposed approach can effectively predict traffic conflicts at signalized and nonsignalized intersections. The findings of this study provide new ideas for proactive safety management in urban road networks.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.