Integration of PV Sources and Capacitor Banks for Sustainable Energy Management in Distribution Networks Using Electric Eel Foraging Algorithm

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Mohammed H. Alqahtani, Abdullah M. Shaheen
{"title":"Integration of PV Sources and Capacitor Banks for Sustainable Energy Management in Distribution Networks Using Electric Eel Foraging Algorithm","authors":"Mohammed H. Alqahtani,&nbsp;Abdullah M. Shaheen","doi":"10.1155/er/7156670","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Electricity drives economic growth, technological advancement, and improved quality of life, but it also poses environmental pollution challenges due to reliance on traditional energy sources such as petroleum and natural gas. Distribution systems’ extensive reach makes it easier to integrate different renewable energies, particularly solar power, across different voltage levels. While integrating solar photovoltaic (PV) cells into existing traditional distribution systems may seem straightforward, studies reveal that their unchecked proliferation can lead to increased electrical losses and greater disruptions in power quality. This study introduces a coordinated methodology of PV energy systems and capacitor bank (CB) devices in electrical distribution feeders. The presented coordinated integration offers a sustainable energy solution for mitigating system losses, facilitating voltage profile enhancement as an important power quality indicator for adequate customer operation. In this regard, practical concerns include variations in power loadings, the discrete nature of CBs, and actual power production from PV sources are taken into consideration. For handling the presented coordinated integration, this paper develops the electric eel foraging-based optimization (EEFO) for energy efficiency and power quality improvement as well as environmental sustainability. The designed EEFO has been evaluated on practical Egyptian and standard IEEE distribution systems, demonstrating its effectiveness in minimizing energy losses and improving power quality. Comparative studies against reported algorithms validate EEFO’s superior performance.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/7156670","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/7156670","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Electricity drives economic growth, technological advancement, and improved quality of life, but it also poses environmental pollution challenges due to reliance on traditional energy sources such as petroleum and natural gas. Distribution systems’ extensive reach makes it easier to integrate different renewable energies, particularly solar power, across different voltage levels. While integrating solar photovoltaic (PV) cells into existing traditional distribution systems may seem straightforward, studies reveal that their unchecked proliferation can lead to increased electrical losses and greater disruptions in power quality. This study introduces a coordinated methodology of PV energy systems and capacitor bank (CB) devices in electrical distribution feeders. The presented coordinated integration offers a sustainable energy solution for mitigating system losses, facilitating voltage profile enhancement as an important power quality indicator for adequate customer operation. In this regard, practical concerns include variations in power loadings, the discrete nature of CBs, and actual power production from PV sources are taken into consideration. For handling the presented coordinated integration, this paper develops the electric eel foraging-based optimization (EEFO) for energy efficiency and power quality improvement as well as environmental sustainability. The designed EEFO has been evaluated on practical Egyptian and standard IEEE distribution systems, demonstrating its effectiveness in minimizing energy losses and improving power quality. Comparative studies against reported algorithms validate EEFO’s superior performance.

基于电鳗觅食算法的光伏电源与电容器组集成配电网可持续能源管理
电力推动了经济增长、技术进步和生活质量的提高,但由于对石油和天然气等传统能源的依赖,它也带来了环境污染的挑战。配电系统的广泛覆盖范围使不同的可再生能源,特别是太阳能,在不同的电压水平上更容易整合。虽然将太阳能光伏(PV)电池整合到现有的传统配电系统中似乎很简单,但研究表明,它们不受控制的扩散可能导致电力损失增加和电力质量更大的中断。本研究介绍了配电馈线中光伏能源系统与电容器组(CB)装置的协调方法。所提出的协调集成为减轻系统损耗提供了可持续的能源解决方案,促进了电压分布的增强,作为充分客户操作的重要电能质量指标。在这方面,实际问题包括电力负荷的变化,cb的离散性,以及PV源的实际发电。为了解决上述协调集成问题,本文提出了基于电鳗觅食的优化方法(EEFO),以提高能源效率和电能质量,并实现环境的可持续性。设计的EEFO已在实际的埃及和标准IEEE配电系统上进行了评估,证明了其在最小化能量损耗和改善电能质量方面的有效性。与已有算法的比较研究验证了EEFO的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信