{"title":"Integration of PV Sources and Capacitor Banks for Sustainable Energy Management in Distribution Networks Using Electric Eel Foraging Algorithm","authors":"Mohammed H. Alqahtani, Abdullah M. Shaheen","doi":"10.1155/er/7156670","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Electricity drives economic growth, technological advancement, and improved quality of life, but it also poses environmental pollution challenges due to reliance on traditional energy sources such as petroleum and natural gas. Distribution systems’ extensive reach makes it easier to integrate different renewable energies, particularly solar power, across different voltage levels. While integrating solar photovoltaic (PV) cells into existing traditional distribution systems may seem straightforward, studies reveal that their unchecked proliferation can lead to increased electrical losses and greater disruptions in power quality. This study introduces a coordinated methodology of PV energy systems and capacitor bank (CB) devices in electrical distribution feeders. The presented coordinated integration offers a sustainable energy solution for mitigating system losses, facilitating voltage profile enhancement as an important power quality indicator for adequate customer operation. In this regard, practical concerns include variations in power loadings, the discrete nature of CBs, and actual power production from PV sources are taken into consideration. For handling the presented coordinated integration, this paper develops the electric eel foraging-based optimization (EEFO) for energy efficiency and power quality improvement as well as environmental sustainability. The designed EEFO has been evaluated on practical Egyptian and standard IEEE distribution systems, demonstrating its effectiveness in minimizing energy losses and improving power quality. Comparative studies against reported algorithms validate EEFO’s superior performance.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/7156670","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/7156670","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Electricity drives economic growth, technological advancement, and improved quality of life, but it also poses environmental pollution challenges due to reliance on traditional energy sources such as petroleum and natural gas. Distribution systems’ extensive reach makes it easier to integrate different renewable energies, particularly solar power, across different voltage levels. While integrating solar photovoltaic (PV) cells into existing traditional distribution systems may seem straightforward, studies reveal that their unchecked proliferation can lead to increased electrical losses and greater disruptions in power quality. This study introduces a coordinated methodology of PV energy systems and capacitor bank (CB) devices in electrical distribution feeders. The presented coordinated integration offers a sustainable energy solution for mitigating system losses, facilitating voltage profile enhancement as an important power quality indicator for adequate customer operation. In this regard, practical concerns include variations in power loadings, the discrete nature of CBs, and actual power production from PV sources are taken into consideration. For handling the presented coordinated integration, this paper develops the electric eel foraging-based optimization (EEFO) for energy efficiency and power quality improvement as well as environmental sustainability. The designed EEFO has been evaluated on practical Egyptian and standard IEEE distribution systems, demonstrating its effectiveness in minimizing energy losses and improving power quality. Comparative studies against reported algorithms validate EEFO’s superior performance.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system