Cell/Surface Interactions and Osseointegration of Ti-6AI-4V: Effects of Laser Microgrooves, Hydroxyapatite Nanorods, and Arginyl-Glycyl-Aspartic Acid (RGD) on Ti-6Al-4V
Precious O. Etinosa, Ali A. Salifu, Sarah A. Osafo, Stanley C. Eluu, John D. Obayemi, Winston O. Soboyejo
{"title":"Cell/Surface Interactions and Osseointegration of Ti-6AI-4V: Effects of Laser Microgrooves, Hydroxyapatite Nanorods, and Arginyl-Glycyl-Aspartic Acid (RGD) on Ti-6Al-4V","authors":"Precious O. Etinosa, Ali A. Salifu, Sarah A. Osafo, Stanley C. Eluu, John D. Obayemi, Winston O. Soboyejo","doi":"10.1002/jbm.a.37929","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work presents the results of an experimental study of surface-modified Ti-6Al-4V designed to enhance implant integration with human fetal osteoblast (hFOB) cells. Three surface profiles—laser-grooved (LG), Hydroxyapatite (HA)-coated laser-grooved (LGH), and arginyl glycyl aspartic acid (RGD)-functionalized HA-coated laser-grooved (LGHR)—were developed and evaluated for their effects on hFOB cell attachment, spreading, proliferation, and ECM formation over a 28-day period. Cell-laden surfaces were analyzed using scanning electron and fluorescence microscopies, and cell proliferation was quantified using the Alamar Blue assay to provide additional insights. The surface characterization revealed that the LG substrate facilitated contact guidance, promoting directional cell alignment and attachment. The LGH substrate additionally created a bioactive interface by mimicking natural bone tissue, releasing calcium and phosphate ions that enhanced cell attachment and spreading. The LGHR substrate provided specific biological cues, further improving early cell attachment, accelerating proliferation, and promoting extracellular matrix (ECM) formation. Quantitative analysis confirmed that LGHR surfaces exhibited the highest cell density, areal coverage, and metabolic activity, particularly during the initial stages of culture, emphasizing the synergistic effects of HA and RGD coatings in accelerating osseointegration. This novel approach offers robust improvements in implant-tissue integration, accelerating wound healing and enhancing tissue compatibility, with promising implications for orthopedic and dental applications.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37929","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents the results of an experimental study of surface-modified Ti-6Al-4V designed to enhance implant integration with human fetal osteoblast (hFOB) cells. Three surface profiles—laser-grooved (LG), Hydroxyapatite (HA)-coated laser-grooved (LGH), and arginyl glycyl aspartic acid (RGD)-functionalized HA-coated laser-grooved (LGHR)—were developed and evaluated for their effects on hFOB cell attachment, spreading, proliferation, and ECM formation over a 28-day period. Cell-laden surfaces were analyzed using scanning electron and fluorescence microscopies, and cell proliferation was quantified using the Alamar Blue assay to provide additional insights. The surface characterization revealed that the LG substrate facilitated contact guidance, promoting directional cell alignment and attachment. The LGH substrate additionally created a bioactive interface by mimicking natural bone tissue, releasing calcium and phosphate ions that enhanced cell attachment and spreading. The LGHR substrate provided specific biological cues, further improving early cell attachment, accelerating proliferation, and promoting extracellular matrix (ECM) formation. Quantitative analysis confirmed that LGHR surfaces exhibited the highest cell density, areal coverage, and metabolic activity, particularly during the initial stages of culture, emphasizing the synergistic effects of HA and RGD coatings in accelerating osseointegration. This novel approach offers robust improvements in implant-tissue integration, accelerating wound healing and enhancing tissue compatibility, with promising implications for orthopedic and dental applications.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.