High thermal variation in maximum temperatures invert Brett's heat-invariant rule at fine spatial scales

IF 4.3 2区 环境科学与生态学 Q1 ECOLOGY
Ecology Pub Date : 2025-06-04 DOI:10.1002/ecy.70124
Pol Pintanel, Miguel Tejedo, Urtzi Enriquez-Urzelai, Saúl F. Domínguez-Guerrero, Martha M. Muñoz
{"title":"High thermal variation in maximum temperatures invert Brett's heat-invariant rule at fine spatial scales","authors":"Pol Pintanel,&nbsp;Miguel Tejedo,&nbsp;Urtzi Enriquez-Urzelai,&nbsp;Saúl F. Domínguez-Guerrero,&nbsp;Martha M. Muñoz","doi":"10.1002/ecy.70124","DOIUrl":null,"url":null,"abstract":"<p>Discovering how species' thermal limits evolve and vary spatially is crucial for predicting their vulnerability to ongoing environmental warming. Current evidence indicates that heat tolerance is less spatially variable than cold tolerance among species, presenting a major concern for organismal vulnerability in a rapidly warming world. This asymmetry in thermal limits has been supported by large-scale geographic studies, across latitudinal and elevational gradients (known as Brett's heat-invariant rule). Yet, how critical limits vary across finer spatial scales (e.g., across microenvironments) is less understood. Here, we show that minimum temperatures are more variable than maximum temperatures at large geographic scales (across latitude/elevation) but are less variable at local scales (within sites), in turn guiding spatial asymmetries in thermal tolerances. Using thermal tolerance measurements from amphibians, insects, and reptiles, we confirm the invariance of heat tolerance at large spatial scales and also find more variable heat than cold tolerances at local scales (an inverted Brett's heat-invariant rule at fine spatial scales). Our results suggest that regional- or global-level studies will likely obscure fine-scale structuring in thermal habitats and corresponding patterns of local heat tolerance adaptation. We emphasize that inferences based on broadscale geographic patterns obscure fine-scale variation in thermal physiology. For instance, a genetic basis for fine-scale variation in thermal physiology may reshuffle spatial and phylogenetic patterns of vulnerability.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70124","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70124","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Discovering how species' thermal limits evolve and vary spatially is crucial for predicting their vulnerability to ongoing environmental warming. Current evidence indicates that heat tolerance is less spatially variable than cold tolerance among species, presenting a major concern for organismal vulnerability in a rapidly warming world. This asymmetry in thermal limits has been supported by large-scale geographic studies, across latitudinal and elevational gradients (known as Brett's heat-invariant rule). Yet, how critical limits vary across finer spatial scales (e.g., across microenvironments) is less understood. Here, we show that minimum temperatures are more variable than maximum temperatures at large geographic scales (across latitude/elevation) but are less variable at local scales (within sites), in turn guiding spatial asymmetries in thermal tolerances. Using thermal tolerance measurements from amphibians, insects, and reptiles, we confirm the invariance of heat tolerance at large spatial scales and also find more variable heat than cold tolerances at local scales (an inverted Brett's heat-invariant rule at fine spatial scales). Our results suggest that regional- or global-level studies will likely obscure fine-scale structuring in thermal habitats and corresponding patterns of local heat tolerance adaptation. We emphasize that inferences based on broadscale geographic patterns obscure fine-scale variation in thermal physiology. For instance, a genetic basis for fine-scale variation in thermal physiology may reshuffle spatial and phylogenetic patterns of vulnerability.

Abstract Image

在精细的空间尺度上,最高温度的高热变化与布雷特的热不变规则相反
发现物种的热极限如何演变和空间变化对于预测它们对持续环境变暖的脆弱性至关重要。目前的证据表明,物种之间的耐热性在空间上的差异小于耐寒性,这是一个对快速变暖世界中生物脆弱性的主要关注。这种热极限的不对称已经得到了跨纬度和海拔梯度的大规模地理研究的支持(称为布雷特热不变规则)。然而,在更精细的空间尺度上(例如,在微环境中),临界极限是如何变化的,人们知之甚少。在这里,我们发现在大地理尺度上(跨纬度/海拔),最低温度比最高温度变化更大,但在局部尺度上(在站点内)变化较小,从而导致热容的空间不对称。通过对两栖动物、昆虫和爬行动物的热耐受性测量,我们证实了它们在大空间尺度上的热耐受性不变性,并发现它们在局部尺度上的热耐受性比冷耐受性变化更大(在小空间尺度上的逆布雷特热不变性规则)。我们的研究结果表明,区域或全球水平的研究可能会模糊热生境的精细结构和相应的局部耐热适应模式。我们强调,基于大尺度地理格局的推断掩盖了热生理学的精细尺度变化。例如,热生理精细尺度变化的遗传基础可能会重新洗选脆弱性的空间和系统发育模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信