N $N$ -Soliton Matrix mKdV Solutions: Some Special Solutions Revisited

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Sandra Carillo, Mauro Lo Schiavo, Cornelia Schiebold
{"title":"N\n $N$\n -Soliton Matrix mKdV Solutions: Some Special Solutions Revisited","authors":"Sandra Carillo,&nbsp;Mauro Lo Schiavo,&nbsp;Cornelia Schiebold","doi":"10.1111/sapm.70061","DOIUrl":null,"url":null,"abstract":"<p>In this article, a general solution formula is derived for the <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>×</mo>\n <mi>d</mi>\n </mrow>\n <annotation>${\\sf d}\\times {\\sf d}$</annotation>\n </semantics></math>-matrix modified Korteweg–de Vries equation. Then, a solution class corresponding to special parameter choices is examined in detail. Roughly, this class can be described as <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-solitons (in the sense of Goncharenko) with common phase matrix. It turns out that such a solution even takes values in a <i>commutative</i> subalgebra of the <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>×</mo>\n <mi>d</mi>\n </mrow>\n <annotation>${\\sf d}\\times {\\sf d}$</annotation>\n </semantics></math>-matrices. We arrive at a rich picture of possibilities for generalized 1-solitons and at visual patterns of <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-solitons which combine nonlinear with linear features. The impact of the phase matrix is visualized in computer plots.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70061","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a general solution formula is derived for the d × d ${\sf d}\times {\sf d}$ -matrix modified Korteweg–de Vries equation. Then, a solution class corresponding to special parameter choices is examined in detail. Roughly, this class can be described as N $N$ -solitons (in the sense of Goncharenko) with common phase matrix. It turns out that such a solution even takes values in a commutative subalgebra of the d × d ${\sf d}\times {\sf d}$ -matrices. We arrive at a rich picture of possibilities for generalized 1-solitons and at visual patterns of N $N$ -solitons which combine nonlinear with linear features. The impact of the phase matrix is visualized in computer plots.

N$ N$ -孤子矩阵mKdV解:一些特殊解的再探讨
本文导出了d × d ${\sf d}\乘以{\sf d}$ -矩阵修正Korteweg-de Vries方程的通解公式。然后,详细分析了特殊参数选择对应的解类。粗略地说,这类可以被描述为具有共同相位矩阵的N$ N$ -孤子(在Goncharenko的意义上)。结果证明,这样的解甚至取d × d ${\sf d}\乘以{\sf d}$ -矩阵的交换子代数中的值。我们得到了广义1-孤子的丰富的可能性图景,以及结合了非线性和线性特征的N$ N$ -孤子的视觉模式。相矩阵的影响在计算机图中可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信