An NV Magnetometer With High Fluorescence Excitation and Collection Efficiency Using Silicon-Based MEMS Process

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qingli Zhang;Hui Wang;Guozheng Wang;Doudou Zheng;Chenyu Hou;Jianghao Fu;Li Qin;Huanfei Wen;Zhonghao Li;Xin Li;Hao Guo;Jun Tang;Yanjun Li;Zongmin Ma;Jun Liu
{"title":"An NV Magnetometer With High Fluorescence Excitation and Collection Efficiency Using Silicon-Based MEMS Process","authors":"Qingli Zhang;Hui Wang;Guozheng Wang;Doudou Zheng;Chenyu Hou;Jianghao Fu;Li Qin;Huanfei Wen;Zhonghao Li;Xin Li;Hao Guo;Jun Tang;Yanjun Li;Zongmin Ma;Jun Liu","doi":"10.1109/JSEN.2025.3561502","DOIUrl":null,"url":null,"abstract":"The fabrication of nitrogen-vacancy (NV) center magnetometers utilizing micro-electro-mechanical systems (MEMSs) has gained popularity due to the low cost, good consistency, and easy of system integration. This article presents the fabrication of an NV magnetometer using MEMS process, which integrates a silicon-based resonator for microwave transmission, a diamond waveguide for fluorescence emission, and a silicon-based reflector for fluorescence collection. The magnetometer operates on the principle of continuous-wave optically detected magnetic resonance (CW-ODMR) for magnetic field detection. The inhomogeneity of the silicon-based resonator in the <inline-formula> <tex-math>$1.9\\times 1.9$ </tex-math></inline-formula> mm area of hole is 7.7%. The combined effect of the silicon-based reflector and diamond waveguide achieves a 2.82-fold enhancement in fluorescence collection efficiency. The silicon-silicon interface between the resonator and reflector components is fabricated via thermal compression bonding to form a groove for subsequent diamond waveguide integration. The processed components are placed within a ceramic tube shell and subsequently encapsulated in glass. The integrated magnetometer, with dimensions of <inline-formula> <tex-math>$14\\times 14\\times 12$ </tex-math></inline-formula> mm, achieves a sensitivity of 901.96 pT/Hz<inline-formula> <tex-math>${}^{1/2}$ </tex-math></inline-formula> within the 1–55 Hz, a photon shot noise limited sensitivity of 121 pT/Hz<inline-formula> <tex-math>${}^{1/2}$ </tex-math></inline-formula>, and a magnetic field detection range of <inline-formula> <tex-math>$\\pm 168.2~\\mu $ </tex-math></inline-formula>T.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 11","pages":"19032-19039"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10974469/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication of nitrogen-vacancy (NV) center magnetometers utilizing micro-electro-mechanical systems (MEMSs) has gained popularity due to the low cost, good consistency, and easy of system integration. This article presents the fabrication of an NV magnetometer using MEMS process, which integrates a silicon-based resonator for microwave transmission, a diamond waveguide for fluorescence emission, and a silicon-based reflector for fluorescence collection. The magnetometer operates on the principle of continuous-wave optically detected magnetic resonance (CW-ODMR) for magnetic field detection. The inhomogeneity of the silicon-based resonator in the $1.9\times 1.9$ mm area of hole is 7.7%. The combined effect of the silicon-based reflector and diamond waveguide achieves a 2.82-fold enhancement in fluorescence collection efficiency. The silicon-silicon interface between the resonator and reflector components is fabricated via thermal compression bonding to form a groove for subsequent diamond waveguide integration. The processed components are placed within a ceramic tube shell and subsequently encapsulated in glass. The integrated magnetometer, with dimensions of $14\times 14\times 12$ mm, achieves a sensitivity of 901.96 pT/Hz ${}^{1/2}$ within the 1–55 Hz, a photon shot noise limited sensitivity of 121 pT/Hz ${}^{1/2}$ , and a magnetic field detection range of $\pm 168.2~\mu $ T.
基于硅基MEMS工艺的高荧光激发和高收集效率的NV磁强计
利用微机电系统(mems)制造氮空位(NV)中心磁强计具有成本低、一致性好、易于系统集成等优点。本文介绍了一种采用MEMS工艺制造的NV磁强计,该磁强计集成了用于微波传输的硅基谐振器、用于荧光发射的金刚石波导和用于荧光收集的硅基反射器。磁强计的工作原理是连续波光探测磁共振(CW-ODMR),用于磁场探测。硅基谐振器在1.9 × 1.9 mm孔面积内的不均匀性为7.7%。硅基反射器和金刚石波导的联合作用使荧光收集效率提高了2.82倍。谐振器和反射器组件之间的硅-硅界面通过热压缩键合形成凹槽,用于后续的金刚石波导集成。加工后的部件放置在陶瓷管外壳内,随后封装在玻璃中。该集成磁力计的尺寸为$14\ × 14\ × 12$ mm,在1-55 Hz范围内的灵敏度为901.96 pT/Hz ${}^{1/2}$,光子发射噪声限制灵敏度为121 pT/Hz ${}^{1/2}$,磁场探测范围为$\pm 168.2~\mu $ T。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信